精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上为单调递增函数,求的取值范围;

(3)当时,函数的图象与轴交于两点,又的导函数.若正常数满足条件.证明: <0.

【答案】(1)(2)(3),理由见解析

【解析】试题分析:(1),可知[,1]是增函数,在[1,2]是减函数,所以最大值为f(1).(2) 在区间上为单调递增函数,上恒成立,利用分离参数上恒成立,即求的最大值。

(3)有两个实根两式相减,又

要证: ,只需证:可证。

试题解析:(1)

函数[,1]是增函数,在[1,2]是减函数,

所以

(2)因为,所以

因为在区间单调递增函数,所以在(0,3)恒成立

,有=,(

综上:

(3),又有两个实根

,两式相减,得

,

于是

要证: ,只需证:

只需证:.(*)

,∴(*)化为 只证即可.

在(0,1)上单调递增,

.∴

(其他解法根据情况酌情给分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6位选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如图所示的茎叶图.为了增加结果的神秘感,主持人暂时没有公布甲、乙两班最后一位选手的成绩.

(Ⅰ)求乙班总分超过甲班的概率;

(Ⅱ)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分.请你从平均分和方差的角度来分析两个班的选手的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).

(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;

(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合P={x|-2≤x≤10},Q={x|1-mx≤1+m}.

(1)求集合RP

(2)若PQ,求实数m的取值范围;

(3)若PQQ,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着生活水平的提高,越来越多的人参与了潜水这项活动。某潜水中心调查了100名男姓与100名女姓下潜至距离水面5米时是否会耳鸣,下图为其等高条形图:

绘出2×2列联表;

②根据列联表的独立性检验,能否在犯错误的概率不超过0.05的前提下认为耳鸣与性别有关系?

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”.

(1)判断集合A={-1,1,2}是否为可倒数集;

(2)试写出一个含3个元素的可倒数集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了调查喜欢语文学科与性别的关系,随机调查了一些学生情况,具体数据如下表:

调查统计

不喜欢语文

喜欢语文

13

10

7

20

为了判断喜欢语文学科是否与性别有关系,根据表中的数据,得到K2的观测值

k=≈4.844,因为k≥3.841,根据下表中的参考数据:

P(K2≥k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

判定喜欢语文学科与性别有关系,那么这种判断出错的可能性为( )

A. 95% B. 50% C. 25% D. 5%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校大一新生中的6名同学打算参加学校组织的“演讲团”、“吉他协会”等五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中没有人参加“演讲团”的不同参加方法数为( )

A. 3600 B. 1080 C. 1440 D. 2520

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1上是单调函数,求实数取值范围.

2)求在区间上的最小值.

查看答案和解析>>

同步练习册答案