精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sinωx,sinωx)
b
=(sinωx,
3
coxωx)
,其中ω>0,设函数f(x)=2
a
b
,已知f(x)的最小正周期为π.
(1)求f(x)的解析式;
(2)设g(x)=log2f(x),求g(x)的定义域和单调递增区间.
(3)证明:直线x=
6
是g(x)图象的一条对称轴.
分析:(1)先根据向量的数量积运算公式以及两角和与差的正弦函数求出函数f(x)的表达式,再结合f(x)的最小正周期为π求出ω即可得到f(x)的解析式;
(2)先根据真数大于0结合三角函数的图象求出函数的定义域;再结合符合函数的单调性即可求出函数的单调递增区间.(注意是在定义域内)
(3)设
6
+x
在g(x)的定义域中,可得
6
-x
也在g(x)的定义域中;只需要证明g(
6
+x)=g(
6
-x)
即可说明结论.
解答:解:(1)f(x)=2(sin2ωx+
3
sinωx•cosωx)=1-cos2ωx+
3
sin2ωx
=2(sin2ωx•
3
2
-cos2ωx•
1
2
)+1=2sin(2ωx-
π
6
)+1

∵ω>0,
T=
=
π
ω

∴ω=1,
f(x)=2sin(2x-
π
6
)+1

(2)g(x)=log2[2sin(2x-
π
6
)+1]

2sin(2x-
π
6
)+1>0
得:sin(2x-
π
6
)>-
1
2

2kπ-
π
6
<2x-
π
6
6
+2kπ

kπ<x<kπ+
3
(k∈Z)

即g(x)的定义域为(kπ,kπ+
3
)(k∈Z)

2kπ-
π
6
<2x-
π
6
≤2kπ+
π
2
⇒kπ<x≤kπ+
π
3

故增区间为(kπ,kπ+
π
3
](k∈Z)

(3)设
6
+x
在g(x)的定义域中,则对一切k∈Z,有kπ<
6
+x<kπ+
3

-kπ-
3
<-
6
-x<-kπ

(-k+1)π<
6
-x<(-k+1)π+
3
(k∈Z)

∴点
6
-x
也在g(x)的定义域中.
又 g(
6
+x)=log2(-2cos2x+1)
g(
6
-x)=log2(-2cos2x+1)

g(
6
+x)=g(
6
-x)
,故g(x)的图象关于直线x=
6
对称.
点评:本题主要考查平面向量数量积的运算以及两角和与差的正弦函数和复合函数单调性的应用.在涉及到对数函数问题时,一定要注意定义域的限定,避免出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
)
b
=(1,cosθ)
θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表达式.
(2)用“五点作图法”画出函数f(x)在一个周期上的图象.
(3)写出f(x)在[-π,π]上的单调递减区间.
(4)设关于x的方程f(x)=m在x∈[-π,π]上的根为x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,则sin2θ+cos2θ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此结论求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1)
b
=(2,2)
f(x)=
a
b
+2

①用“五点法”作出函数y=f(x)在长度为一个周期的闭区间的图象.
②求函数f(x)的最小正周期和单调增区间;
③求函数f(x)的最大值,并求出取得最大值时自变量x的取值集合
④函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
⑤当x∈[0,π],求函数y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作图
精英家教网

查看答案和解析>>

同步练习册答案