【题目】已知幂函数在(0,+∞)上单调递增,函数g(x)=2x-k.
(1)求m的值;
(2)当x∈[1,2)时,记f(x),g(x)的值域分别为集合A,B,设p:x∈A,q:x∈B,若p是q成立的必要条件,求实数k的取值范围.
【答案】(1) m=0. (2) [0,1].
【解析】
(1)根据f(x)为幂函数可以知道(m-1)2=1,从而可以求解m的取值,然后将m代入中,判断f(x)的单调性即可求出m的取值. (2)由p是q成立的必要条件可知BA,所以分别求f(x)和g(x)的值域,根据子集的关系建立k的不等式,即可求得k的范围.
(1)依题意得,(m-1)2=1m=0或m=2,
当m=2时,f(x)=x-2在(0,+∞)上单调递减,与题设矛盾,舍去,所以m=0.
(2)由(1)得,f(x)=x2,
当x∈[1,2)时,f(x)∈[1,4),即A=[1,4),
当x∈[1,2)时,g(x)∈[2-k,4-k),即B=[2-k,4-k),
因p是q成立的必要条件,则BA,
则解得0≤k≤1.
所以实数k的取值范围为[0,1].
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c.已知asin(A+B)=csin.
(1)求A;
(2)求sinBsinC的取值范围;
(3)若△ABC的面积为,周长为8,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩.
某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,169).
(Ⅰ)求物理原始成绩在区间(47,86)的人数;
(Ⅱ)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.
(附:若随机变量,则,,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲船在岛A的正南B处,以的速度向正北航行,,同时乙船自岛A出发以的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调研机构,对本地岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,结果显示,有人为“低碳族”,该人的年龄情况对应的频率分布直方图如图.
(1)根据频率分布直方图,估计这名“低碳族”年龄的平均值,中位数;
(2)若在“低碳族”且年龄在、的两组人群中,用分层抽样的方法抽取人,试估算每个年龄段应各抽取多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:类(不参加课外阅读),类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时).调查结果如下表:
类 | 类 | 类 | |
男生 | 5 | 3 | |
女生 | 3 | 3 |
(1)求出表中,的值;
(2)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为“参加课外阅读与否”与性别有关;
男生 | 女生 | 总计 | ||
不参加课外阅读 | ||||
参加课外阅读 | ||||
总计 |
P(K≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com