精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若f (x)在区间(-∞,2)上为单调递增函数,求实数a的取值范围;

(2)若a=0,x0<1,设直线y=g(x)为函数f (x)的图象在x=x0处的切线,求证:f (x)≤g(x).

【答案】(1);(2)见解析

【解析】试题分析:1求出函数的导函数通过恒成立推出即可求出的范围;(2利用化简通过函数处的切线方程为讨论当 利用分析法证明;构造函数 求出构造新函数利用公式的导数求解函数的最值然后推出结论.

试题解析:(1)解 易知f ′(x)=-

由已知得f ′(x)≥0对x∈(-∞,2)恒成立,

故x≤1-a对x∈(-∞,2)恒成立,∴1-a≥2,∴a≤-1.

即实数a的取值范围为(-∞,-1].

(2)证明 a=0,则f (x)=.

函数f (x)的图象在x=x0处的切线方程为y=g(x)=f′(x0)(x-x0)+f (x0).

令h(x)=f (x)-g(x)=f (x)-f ′(x0)(x-x0)-f (x0),x∈R,

则h′(x)=f ′(x)-f ′(x0)=.

设φ(x)=(1-x)ex0-(1-x0)ex,x∈R,

则φ′(x)=-ex0-(1-x0)ex,∵x0<1,∴φ′(x)<0,

∴φ(x)在R上单调递减,而φ(x0)=0,

∴当x<x0时,φ(x)>0,当x>x0时,φ(x)<0,

∴当x<x0时,h′(x)>0,当x>x0时,h′(x)<0,

∴h(x)在区间(-∞,x0)上为增函数,在区间(x0,+∞)上为减函数,

∴x∈R时,h(x)≤h(x0)=0,

∴f (x)≤g(x).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数同时满足:(1)对于定义域上的任意,恒有;(2)对于定义域上的任意,当时,恒有,则称函数为“理想函数”.给出下列四个函数中:①; ②; ③;④,则被称为“理想数”的有________(填相应的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,点是对角线上的动点(点不重合),则下列结论正确的是____.

①存在点,使得平面平面

②存在点,使得平面

的面积不可能等于

④若分别是在平面与平面的正投影的面积,则存在点,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为FF关于原点的对称点为P,过F轴的垂线交抛物线于MN两点,给出下列三个结论:

必为直角三角形;

②直线必与抛物线相切;

的面积为.其中正确的结论是___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程为,射线与椭圆的交点为M,过M作倾斜角互补的两条直线,分别与椭圆交于AB两点(异于M).

(1)求证:直线AB的斜率为定值;

(2)求面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在抛物线外,过点作抛物线的两切线,设两切点分别为,记线段的中点为.

(Ⅰ)求切线的方程;

(Ⅱ)证明:线段的中点在抛物线上;

(Ⅲ)设点为圆上的点,当取最大值时,求点的纵坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中, 平面 ,底面是等腰梯形,且 ,其中 .

1)证明:平面 平面 .

2)求点 到平面 的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲厂以千克/小时的速度匀速生产某种产品(生产条件要求),每小时可获得利润是.

1)要使生产该产品小时获得的利润不低于元,求的取值范围;

2)要使生产千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 为等边三角形,且平面平面.

(Ⅰ)证明:

(Ⅱ)若棱锥的体积为,求该四棱锥的侧面积.

【答案】(Ⅰ)证明见解析;(Ⅱ) .

【解析】试题分析】(I)的中点为,连接.利用等腰三角形的性质和矩形的性质可证得,由此证得平面,故,故.(II) 可知是棱锥的高,利用体积公式求得,利用勾股定理和等腰三角形的性质求得的值,进而求得面积.

试题解析】

证明:(Ⅰ)取的中点为,连接

为等边三角形,∴.

底面中,可得四边形为矩形,∴

,∴平面

平面,∴.

,所以.

(Ⅱ)由面

平面,所以为棱锥的高,

,知

.

由(Ⅰ)知,∴.

.

,可知平面,∴

因此.

的中点,连结,则

.

所以棱锥的侧面积为.

型】解答
束】
20

【题目】已知圆经过椭圆 的两个焦点和两个顶点,点 是椭圆上的两点,它们在轴两侧,且的平分线在轴上, .

(Ⅰ)求椭圆的方程;

(Ⅱ)证明:直线过定点.

查看答案和解析>>

同步练习册答案