精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中,若的三条边长,则下列结论:①对于一切都有;②存在使不能构成一个三角形的三边长;③为钝角三角形,存在,使,其中正确的个数为______

A. 3B. 2C. 1D. 0

【答案】A

【解析】

构造函数,根据函数单调性可知,根据三角形三边关系可知,可推导出,从而可得,可知①正确;通过取值可知存在取值使得取值不满足三边关系,可知②正确;根据余弦定理可知,可得,再结合,可知,由零点存在性定理可知③正确;由此可得选项.

①令

上单调递减 上单调递减

时,

根据三角形三边关系可知:

时,都有,可知①正确;

②取

,不满足三角形三边关系,可知②正确;

为钝角三角形

,从而

,由零点存在性定理,可知③正确

本题正确选项:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知α∈( ,π),sinα=
(1)求sin( +α)的值;
(2)求cos( ﹣2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为,其范围为,分别有五个级别:,畅通;,基本畅通;,轻度拥堵;,中度拥堵;,严重拥堵.在晚高峰时段(),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.

(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;

(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;

(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为等差数列,.

(1) 求数列的通项公式;

(2)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口的中点,分别落在线段上.已知米,米,记

(1)试将污水净化管道的长度表示为的函数,并写出定义域;

(2)若,求此时管道的长度

(3)当取何值时,污水净化效果最好?并求出此时管道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙人投篮,投进的概率分别是.

(1)现人各投篮次,求人至少一人投进的概率;

(2)用表示乙投篮次的进球数,求随机变量的概率分布及数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校计划在全国中学生田径比赛期间,安排6位志愿者到4个比赛场地提供服务,要求甲、乙两个比赛场地各安排一个人,剩下两个比赛场地各安排两个人,其中的小李和小王不在一起,不同的安排方案共有( )

A. 168种 B. 156种 C. 172种 D. 180种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区100位居民的人均月用水量(单位:)的分组及各组的频数如下:

,4; ,8; ,15;

,22; ,25; ,14;

,6; ,4; ,2.

(1)列出样本的频率分布表;

(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数;

(3)当地政府制定了人均月用水量为的标准,若超出标准加倍收费,当地政府说,以上的居民不超过这个标准,这个解释对吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算K2=8.01,附表如下:

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

参照附表,得到的正确的结论是(  )

A. 有99%以上的把握认为“喜欢乡村音乐与性别有关”

B. 有99%以上的把握认为“喜欢乡村音乐与性别无关”

C. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别有关”

D. 在犯错误的概率不超过0.1%的前提下,认为“喜欢乡村音乐与性别无关”

查看答案和解析>>

同步练习册答案