精英家教网 > 高中数学 > 题目详情

【题目】某医院对治疗支气管肺炎的两种方案进行比较研究,将志愿者分为两组,分别采用方案和方案进行治疗,统计结果如下:

有效

无效

合计

使用方案

96

120

使用方案

72

合计

32

1)完成上述列联表,并比较两种治疗方案有效的频率;

2)能否在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关?

附:,其中.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)列联表见解析,使用方案治疗有效的频率更高些;(2)不能.

【解析】

(1)由游客购买情况统计人数分布表数据直接填入列联表,

(2)代入公式,计算出的值,与独立性检验判断表比较作出判断.

(1) 根据题意,填表如下:

有效

无效

合计

使用方案

96

24

120

使用方案

72

8

80

合计

168

32

200

使用方案有效的频率

使用方案有效的频率

∴使用方案治疗有效的频率更高些.

2

∴不能在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线与抛物线交于两点,是坐标原点,.

1)求线段中点的轨迹的方程;

2)设直线与曲线交于两点,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)若a0时,求函数的单调递增区间;

2)若函数x1时取极大值,求实数a的取值范围;

3)设函数的零点个数为m,试求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB两地相距100公里,两地政府为提升城市的抗疫能力,决定在AB之间选址P点建造储备仓库,共享民生物资,当点P在线段AB的中点C时,建造费用为2000万元,若点P在线段AC上(不含点A),则建造费用与PA之间的距离成反比,若点P在线段CB上(不含点B),则建造费用与PB之间的距离成反比,现假设PA之间的距离为x千米A地所需该物资每年的运输费用为万元,B地所需该物资每年的运输费用为万元,表示建造仓库费用,表示两地物资每年的运输总费用(单位:万元).

1)求函数的解析式;

2)若规划仓库使用的年限为,求的最小值,并解释其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设无穷数列的前项和为,已知

(1)求的值;

(2)求数列的通项公式;

(3)是否存在数列的一个无穷子数列,使对一切均成立?若存在,请写出数列的所有通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有AB两道独立运行的生产工序,且两道工序出现故障的概率依次是0.020.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若AB两道工序都出现故障,则生产成本增加5万元.生产线②:有ab两道独立运行的生产工序,且两道工序出现故障的概率依次是0.040.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若ab两道工序都出现故障,则生产成本增加13万元.

1)若选择生产线①,求生产成本恰好为18万元的概率;

2)为最大限度节约生产成本,你会给工厂建议选择哪条生产线?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,且.

1)证明:.

2)若,试在棱上确定一点,使与平面所成角的正弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的导函数零点的个数;

2)若的最小值为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知曲线为参数),曲线为参数),且,点P为曲线的公共点.

1)求动点P的轨迹方程;

2)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为,求动点P到直线l的距离的取值范围.

查看答案和解析>>

同步练习册答案