精英家教网 > 高中数学 > 题目详情
19.已知锐角△ABC中,角A、B、C对应的边分别为a、b、c,tanA=$\frac{\sqrt{3}bc}{b^2+c^2-a^2}$.
(1)求A的大小;
(2)设函数f(x)=sin(ωx-$\frac{π}{6}$)-cosωx,(ω>0),且f(x)图象上相领两最高点间的距离为π,求f(B)的取值范围.

分析 (1)利用余弦定理可求得sinA的值,即可求得A的值;
(2)化简函数,利用周期确定ω,进而可得函数的解析式,即可求f(B)的取值范围.

解答 解:(1)∵tanA=$\frac{\sqrt{3}bc}{b^2+c^2-a^2}$,
∴tanA=$\frac{\sqrt{3}}{2cosA}$,
∴sinA=$\frac{\sqrt{3}}{2}$,
∵0$<A<\frac{π}{2}$,
∴$A=\frac{π}{3}$;
(2)f(x)=sin(ωx-$\frac{π}{6}$)-cosωx=$\sqrt{3}$sin(ωx-$\frac{π}{3}$)
∵f(x)图象上相邻两最高点间的距离为π,
∴T=π
∴$\frac{2π}{ω}$=π
∴ω=2
∴f(x)=$\sqrt{3}$sin(2x-$\frac{π}{3}$)
∴f(B)=$\sqrt{3}$sin(2B-$\frac{π}{3}$)
∵$\frac{π}{6}$<B<$\frac{π}{2}$,∴0<2B-$\frac{π}{3}$<$\frac{2π}{3}$
∴0<sin(2B-$\frac{π}{3}$)≤1
∴0<f(B)≤$\sqrt{3}$.

点评 本题考查余弦定理,考查三角函数的图象与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图在三棱锥S-ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,SA=SC=$\sqrt{2}$,M为AB的中点.
(I)证明:AC⊥SB;
(Ⅱ)求点B到平面SCM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知正△ABC的边长为1,那么在斜二侧画法中它的直观图△A′B′C′的面积为$\frac{{\sqrt{6}}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点P(x,3)是角θ终边上一点,且cosθ=-$\frac{4}{5}$,则x的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集A={x||x+2|<3}B={x|(x-m)(x-2)<0},且A∩B=(-1,n),则m-n=(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a>1,b>0,a+b=2,则$\frac{1}{a-1}$+$\frac{1}{b}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的顶点、焦点坐标、长轴长及离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)=lnx,a>b>0,M=f($\sqrt{ab}$),N=f($\frac{a+b}{2}$),R=$\frac{1}{2}$[f(a)+f(b)],则下列关系式中正确的是(  )
A.N=R<MB.N=R>MC.M=R<ND.M=R>N

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知sin($\frac{π}{4}$+2α)sin($\frac{π}{4}$-2α)=$\frac{1}{4}$,则2sin22α-1=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案