精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=2sinx•cosx+2$\sqrt{3}$cos2x-$\sqrt{3}$
(1)求函数f(x)的最小正周期和单调减区间;
(2)已知△ABC的三个内角A,B,C的对边分别为a,b,c,其中a=7,若锐角A满足f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,且sinB+sinC=$\frac{13\sqrt{3}}{14}$,求bc的值.

分析 (1)f(x)解析式利用二倍角正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式求出最小正周期,由正弦函数的单调性确定出f(x)的单调递减区间即可;
(2)由f(x)解析式,以及f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,求出A的度数,将sinB+sinC=$\frac{13\sqrt{3}}{14}$,利用正弦定理化简,求出bc的值即可.

解答 解:(1)f(x)=2sinx•cosx+2$\sqrt{3}$cos2x-$\sqrt{3}$=sin2x+$\sqrt{3}$cos2x=2sin(2x+$\frac{π}{3}$),
∵ω=2,∴f(x)的最小正周期T=π,
∵2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,
∴f(x)的单调减区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z;
(2)由f($\frac{A}{2}$-$\frac{π}{6}$)=2sin[2($\frac{A}{2}$-$\frac{π}{6}$)+$\frac{π}{3}$]=2sinA=$\sqrt{3}$,即sinA=$\frac{\sqrt{3}}{2}$,
∵A为锐角,∴A=$\frac{π}{3}$,
由正弦定理可得2R=$\frac{a}{sinA}$=$\frac{7}{\frac{\sqrt{3}}{2}}$=$\frac{14\sqrt{3}}{3}$,sinB+sinC=$\frac{b+c}{2R}$=$\frac{13\sqrt{3}}{14}$,
∴b+c=$\frac{13\sqrt{3}}{14}$×$\frac{14}{\sqrt{3}}$=13,
由余弦定理可知:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{(b+c)^{2}-2bc-{a}^{2}}{2bc}$=$\frac{1}{2}$,
整理得:bc=40.

点评 此题考查了正弦、余弦定理,以及三角函数中的恒等变换应用,熟练掌握定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若多项式p(x)满足p(1)=1,p(2)=3,则p(x)被x2-3x+2除所得的余式为2x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=loga$\frac{1-x}{b+x}$(0<a<1)为奇函数,当x∈(-1,a]时,函数f(x)的值域是(-∞,1],则实数a+b的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\left\{{\begin{array}{l}{{x^2}+{y^2}-2x-10y+18≤0}\\{y≥|{x-a}|+5}\end{array}}$,x,y∈R,若由不等式组围成的区域为P,设两曲线的交点为A,B,C(a,5)且C∈P;
(Ⅰ)求实数a的取值范围;
(Ⅱ)若a=0,求△ABC的面积;
(Ⅲ)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线的变化情况来决定买入或卖出股票.股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系xOy,则股价y(元)和时间x的关系在ABC段可近似地用解析式y=asin(ωx+φ)+b(0<φ<π)来描述,从C点走到今天的D点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D点和C点正好关于直线l:x=34对称.老张预计这只股票未来的走势如图中虚线所示,这里DE段与ABC段关于直线l对称,EF段是股价延续DE段的趋势(规律)走到这波上升行情的最高点F.现在老张决定取点A(0,22),点B(12,19),点D(44,16)来确定解析式中的常数a,b,ω,φ,并且求得ω=$\frac{π}{72}$
(1)请你帮老张算出a,b,φ,并回答股价什么时候见顶(即求F点的横坐标)
(2)老张如能在今天以D点处的价格买入该股票3000股,到见顶处F点的价格全部卖出,不计其它费用,这次操作他能赚多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,都有不等式f(x)+xf′(x)>0成立,若a=40.2f(40.2),b=(log43)f(log43),c=(log4$\frac{1}{16}$)f(log4$\frac{1}{16}$),则a,b,c的大小关系是(  )
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若0<x<1,则2x,${({\frac{1}{2}})^x}$,log2x之间的大小关系为(  )
A.2x<log2x<${({\frac{1}{2}})^x}$B.2x<${({\frac{1}{2}})^x}$<log2xC.${({\frac{1}{2}})^x}$<log2x<2xD.log2x<${({\frac{1}{2}})^x}$<2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC中,${\overrightarrow{AB}^2}-(\overrightarrow{AB}•\overrightarrow{AC}+\overrightarrow{BC}•\overrightarrow{BA})=\overrightarrow{CA}•\overrightarrow{CB}$,边AB,BC的中点分别为D,E.
(1)判断△ABC的形状;
(2)若$\overrightarrow{CD}•\overrightarrow{AE}$=0,求sin2B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设常数a>0,若9x+$\frac{a^2}{x}$≥a2+8对一切正实数x成立,则a的取值范围为(  )
A.[2,4]B.[2,3]C.[-2,4]D.[-2,3]

查看答案和解析>>

同步练习册答案