精英家教网 > 高中数学 > 题目详情

【题目】唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题一一“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在如图所示的直角坐标系中,设军营所在平面区域的边界为,河岸线所在直线方程为,假定将军从点处出发,只要到达军营所在区域即回到军营,则将军行走的最短路程为________.

【答案】

【解析】

求出点关于直线的对称点的坐标,于是将问题转化为点到圆上一点距离的最小值,即为,可得出答案.

如下图所示:

设点关于直线的对称点为点

则线段的中点坐标为,直线的斜率为

由题意可得,解得,所以点的坐标为.

因此,将军行走的最短路程为.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为m为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

1)求曲线C和直线的直角坐标系方程;

2)已知直线与曲线C相交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的左、右焦点分别为为椭圆短轴端点,若为直角三角形且周长为.

1)求椭圆的方程;

2)若直线与椭圆交于两点,直线,斜率的乘积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度.在每一轮游戏中,主持人给出ABCD四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果.设小孩对四种食物排除的序号依次为xAxBxCxD,家长猜测的序号依次为yAyByCyD,其中xAxBxCxDyAyByCyD都是1234四个数字的一种排列.定义随机变量X=(xAyA2+xByB2+xCyC2+xDyD2,用X来衡量家长对小孩饮食习惯的了解程度.

1)若参与游戏的家长对小孩的饮食习惯完全不了解.

)求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;

)求X的分布列(简要说明方法,不用写出详细计算过程);

2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X4,请判断这位家长对小孩饮食习惯是否了解,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ) 求函数的单调区间;

(Ⅱ) 时,求函数上最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,设,且函数上单调递增.

①求实数的取值范围;

②设,当实数取最小值时,求函数的极小值.

2)当时,证明:函数有两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是边长为的正方形的中心,平面的中点.

)求证:平面平面

)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中央广播电视总台2019主持人大赛》是中央人民广播电视总台成立后推出的第一个电视大赛,由撒贝宁担任主持人,康辉、董卿担任点评嘉宾,敬一丹、鲁健、朱迅、俞虹、李洪岩等17位担任专业评审.20191026日起,每周六20:00在中央电视台综合频道播出.某传媒大学为了解大学生对主持人大赛的关注情况,分别在大一和大二两个年级各随机抽取了100名大学生进行调查.下图是根据调查结果绘制的学生场均关注比赛的时间频率分布直方图和频数分布表,并将场均关注比赛的时间不低于80分钟的学生称为赛迷”.

大二学生场均关注比赛时间的频数分布表

时间分组

频数

12

20

24

22

16

6

1)将频率视为概率,估计哪个年级的大学生是赛迷的概率大,请说明理由;

2)已知抽到的100名大一学生中有男生50名,其中10名为赛迷试完成下面的列联表,并据此判断是否有的把握认为赛迷与性别有关.

赛迷

赛迷

合计

合计

附:,其中.

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取60名学生,将期中考试的物理成绩(均为整数)分成六段:后得到如图频率分布直方图.

1)根据频率分布直方图,估计众数和中位数;

2)用分层抽样的方法从的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,求这两人的分数至少一人落在的概率.

查看答案和解析>>

同步练习册答案