精英家教网 > 高中数学 > 题目详情
4.已知$\frac{1}{2}$≤m≤3,函数f(x)=ln(x+2)+$\frac{m}{2}{x^2}$-2.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若$?m∈[{\frac{1}{2},3}]$,对任意的x1,x2∈[0,2](x1≠x2),不等式|f(x1)-f(x2)|<t|$\frac{1}{{{x_1}+2}}-\frac{1}{{{x_2}+2}}$|恒成立,求t的最小值.

分析 (Ⅰ)求出函数的导数,通过讨论m的范围,求出函数f(x)的单调区间即可;
(Ⅱ)求出函数f(x)的导数,讨论m的范围,根据函数的单调性设h(x)=f(x)+$\frac{t}{x+2}$,求出函数的导数,问题转化为t≥(x+2)+mx(x+2)2恒成立,设F(x)=(x+2)+mx(x+2)2,求出函数F(x)的导数,求出F(x)的最大值,从而求出t的最小值即可.

解答 解:(Ⅰ)f(x)的定义域为(-2,+∞),
∵f′(x)=$\frac{{mx}^{2}+2mx+1}{x+2}$,
设g(x)=mx2+2mx+1,△=4m2-4m,
(1)当$\frac{1}{2}$≤m≤1时,△≤0,g(x)≥0恒成立,即f′(x)≤0恒成立,
∴f(x)在(-2,+∞)上递增.
(2)当1<m≤3时,△=4m(m-1)>0,令g(x)=0,得x1=-1-$\frac{\sqrt{{m}^{2}-m}}{m}$>-2,x2=-1+$\frac{\sqrt{{m}^{2}-m}}{m}$,

x(-2,x1x1(x1,x2x2(x2,+∞)
f′(x)+0-0+
f(x)递增极大递减极小递增
∴f(x)的增区间(-2,x1),(x2,+∞),减区间为(x1,x2);
综上,当$\frac{1}{2}$≤m≤1时,f(x)的增区间为(-2,+∞);
当1<m≤3时,增区间(-2,x1),(x2,+∞),减区间(x1,x2).
(Ⅱ)∵f′(x)=$\frac{1}{x+2}$+mx,$\frac{1}{2}$≤m≤3,
∴当0≤m≤2时,x+2>0,mx>0,∴f′(x)>0成立,
∴f′(x)在[0,2]上递增.
设x1<x2,则f(x1)<f(x2),∴|f(x1)-f(x2)|=f(x2)-f(x1),
又∵$\frac{1}{{x}_{1}+2}$>$\frac{1}{{x}_{2}+2}$,∴|$\frac{1}{{x}_{1}+2}$-$\frac{1}{{x}_{2}+2}$|=$\frac{1}{{x}_{1}+2}$-$\frac{1}{{x}_{2}+2}$,
∴|f(x1)-f(x2)|<t|$\frac{1}{{x}_{1}+2}$-$\frac{1}{{x}_{2}+2}$|可化为
f(x2)-f(x1)<t($\frac{1}{{x}_{1}+2}$-$\frac{1}{{x}_{2}+2}$),
即f(x2)+$\frac{t}{{x}_{2}+2}$<f(x1)+$\frac{t}{{x}_{1}+2}$恒成立.
设h(x)=f(x)+$\frac{t}{x+2}$,
∴当0<x1<x2≤2时,h(x2)<h(x1),∴h(x)在[0,2]上为减函数,
h′(x)=$\frac{1}{x+2}$+mx-$\frac{t}{{(x+2)}^{2}}$≤0在x∈[0,2上恒成立,
即t≥(x+2)+mx(x+2)2恒成立,
设F(x)=(x+2)+mx(x+2)2
F′(x)=1+m(x+2)2+2mx(x+2),
∵0≤x≤2,$\frac{1}{2}$≤m≤3,∴F′(x)>0,
∴F(x)在[0,2]上递增,F(x)max=F(2)=4+32m,
∴t≥32m+4,又存在$\frac{1}{2}$≤m≤3,[32m+4]min=20,
∴t≥20,故t的最小值是20.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在某商业促销的最后一场活动中,甲、乙、丙、丁、戊、己6名成员随机抽取4个礼品,每人最多抽一个礼品,且礼品中有两个完全相同的笔记本电脑,两个完全相同的山地车,则甲、乙两人都抽到礼品的情况有(  )
A.36种B.24种C.18种D.9种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知在△ABC中,角A,B,C的对边分别为a,b,c,向量$\overrightarrow{m}$=(sinC-sinA,sinC-sinB)与$\overrightarrow{n}$=(b+c,a)共线.
(I)求角B的大小;
(II)若b=2$\sqrt{3}$,c=$\sqrt{6}+\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.我们把满足:${x_{n+1}}={x_n}-\frac{{f({x_n})}}{{f'({x_n})}}$的数列{xn}叫做牛顿数列.已知函数f(x)=x2-1,数列{xn}为牛顿数列,设${a_n}=ln\frac{{{x_n}-1}}{{{x_n}+1}}$,已知a1=2,则a3=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别为F1,F2,A1,A2为其左、右顶点,以线段F1F2为直径的圆与双曲线的渐进线在第一象限的交点为M,且∠MA1A2=45°,则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f'(x)是定义在(0,π)上的函数f(x)的导函数,有f(x)sinx-f'(x)cosx<0,$a=\frac{1}{2}f(\frac{π}{3})$,b=0,$c=-\frac{{\sqrt{3}}}{2}f(\frac{5π}{6})$,则(  )
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在下列结论中①“p∧q”为真是“p∨q”为真的充分不必要条件;②“p∧q”为假是“p∨q”为真的充分不必要条件;③“p∧q”为真是“?p”为假的充分不必要条件;④“?p”为真是“p∧q”为假的充分不必要条件.正确的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若等差数列{an}的前n项和Sn满足S4=4,S6=12,则S2=(  )
A.-1B.0C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C的两个焦点坐标分别是(-2,0),(2,0),并且经过$P({\sqrt{3},1})$.
(1)求椭圆C的标准方程;
(2)过椭圆C的右焦点F作直线l,直线l与椭圆C相交于A、B两点,与圆O:x2+y2=6相交于D、E两点,当△OAB的面积最大时,求弦DE的长.

查看答案和解析>>

同步练习册答案