精英家教网 > 高中数学 > 题目详情
16.从边长为10cm×16cm的矩形纸板的四角截去四个相同的小正方形,做成一个无盖的盒子,则盒子容积的最大值为(  )
A.160 cm3B.144cm3C.72cm3D.12 cm3

分析 设小正方形的变长为xcm(0<x<5),可表示出盒子的容积,利用导数可求得其最大值.

解答 解:设小正方形的变长为xcm(0<x<5),
则盒子的容积V=(10-2x)(16-2x)x=4x3-52x2+160x(0<x<5),
V'=12x2-104x+160=4(3x-20)(x-2),
当0<x<2时,V'>0,当2<x<5时,V'<0,
∴x=2时V取得极大值,也为最大值,等于(10-4)(16-4)×2=144(cm3),
故选:B.

点评 本题考查导数在解决实际问题中的应用,考查学生的阅读理解能力及利用数学知识解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=3,$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为50°,则$\overrightarrow{AB}$与($\overrightarrow{AB}$-$\overrightarrow{AC}$)的夹角大小为65°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.△ABC中,A=45°,$\frac{a}{b}$=$\sqrt{2}$,则B=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知△ABC的三条边长分别为3、2、4,则△ABC的面积为$\frac{3\sqrt{15}}{4}$,内切圆半径r=$\frac{\sqrt{15}}{6}$,外接圆半径为$\frac{8\sqrt{15}}{15}$,三条边上的中线长为$\frac{\sqrt{31}}{2}$;$\frac{\sqrt{46}}{2}$;$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知曲线C1的极坐标方程为ρ2+2ρcosθ-3=0,直线C2的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=k+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),若两曲线有公共点,则k的取值范围是(  )
A.k∈RB.k>4C.k<-4D.-4≤k≤4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四边形ABCD是正方形,△PAB与△PAD均是以A为直角顶点的等腰直角三角形,点F是PB的中点,点E是边BC上的任意一点.
(1)求证:AF⊥EF.
(2)若PA=2,求三棱锥P-ADF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若底面为正三角形的几何体的三视图如图所示,则几何体的侧面积为(  )
A.$12\sqrt{3}$B.$36\sqrt{3}$C.$27\sqrt{3}$D.72

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.数列{an}中,数列{an}的通项公式${a_n}=\frac{1}{n(n+1)}$,则该数列的前9项之和等于$\frac{9}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设直线l1:2x-my-1=0,l2:(m-1)x-y+1=0.若l1∥l2,则m的值为(  )
A.2B.-1C.2或-1D.1或-2

查看答案和解析>>

同步练习册答案