精英家教网 > 高中数学 > 题目详情
14.直线l的方程为y=x+3,P为l上任意一点,过点P且以双曲线12x2-4y2=3的焦点为焦点作椭圆,那么具有最短长轴的椭圆方程为(  )
A.$\frac{x^2}{5}+\frac{y^2}{4}=1$B.$\frac{x^2}{5}+\frac{y^2}{2}=1$C.$\frac{x^2}{25}+\frac{y^2}{16}=1$D.$\frac{x^2}{10}+\frac{y^2}{16}=1$

分析 由题意设出椭圆方程,P的坐标,结合P在椭圆上,可得关于P的横坐标的方程,由判别式大于等于0求得a的范围,进一步求出a的最小值,结合隐含条件求得b,则椭圆方程可求.

解答 解:由题意可设椭圆方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$( a>b>0),
则c=1,∴a2-b2=c2=1,
设P﹙m.m+3﹚,由P在椭圆上,得$\frac{{m}^{2}}{{a}^{2}}+\frac{(m+3)^{2}}{{a}^{2}-1}=1$,
∴﹙a2-1﹚m2+a2﹙m2+6m+9﹚=a2﹙a2-1﹚=﹙a22-a2
即﹙2a2-1﹚m2+6a2m+10a2-﹙a22=0.
由△=﹙6a22-﹙8a2-4﹚﹙10a2-a4﹚≥0,
得36a4-80a4++40a2+8a6-4a4≥0,
∴-48a2+40+8a4≥0,a4-6a2+5≥0,
即﹙a2-5﹚﹙a2-1﹚≥0,
解得a2≤1或 a2≥5,
∵c2=1,a2>c2
∴a2≥5,长轴最短,即a2=5,
则b2=a2-1=4.
∴所求椭圆方程为:$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{4}=1$.
故选:A.

点评 本题考查椭圆的简单性质,考查了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.过抛物线C:y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,且线段AB的最小长度为4.
(Ⅰ)求抛物线C的方程;
(Ⅱ)已知点D的坐标为(4,0),若过D和B两点的直线交抛物线C的准线于P点,证明直线AP与x轴交于一定点并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点
(1)求AE与D1F所成的角
(文科)(2)证明:AD⊥D1F;
(理科)(2)证明:面AED⊥面A1FD1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题$p:?x∈R,{x_0}^2+4{x_0}+6<0$,则¬p为(  )
A.?x∈R,x2+4x+6≥0B.$?x∈R,{x_0}^2+4{x_0}+6>0$
C.?x∈R,x2+4x+6>0D.$?x∈R,{x_0}^2+4{x_0}+6≥0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)的定义域为R,若存在常数T≠0,使得f(x)=Tf(x+T)对任意的x∈R成立,则称函数f(x)是Ω函数.
(Ⅰ)判断函数f(x)=x,g(x)=sinπx是否是Ω函数;(只需写出结论)
(Ⅱ)说明:请在(i)、(ii)问中选择一问解答即可,两问都作答的按选择(i)计分
(i)求证:若函数f(x)是Ω函数,且f(x)是偶函数,则f(x)是周期函数;
(ii)求证:若函数f(x)是Ω函数,且f(x)是奇函数,则f(x)是周期函数;
(Ⅲ)求证:当a>1时,函数f(x)=ax一定是Ω函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的表面积为(  )
A.8+4$\sqrt{3}$B.8+4$\sqrt{2}$C.8+16$\sqrt{2}$D.8+8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A(0,1),B(0,-1),点P满足$\frac{\sqrt{{x}^{2}+(y-1)^{2}}}{|y-\frac{1}{4}|}$=2,则|PA|-|PB|等于(  )
A.1B.-1C.±1D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等腰直角三角形ABC中,AC=BC=1,点M,N分别为AB,BC的中点,点P为△ABC内部任一点,则$\overrightarrow{AN}•\overrightarrow{MP}$取值范围为(  )
A.$({-\frac{3}{4},\frac{3}{4}})$B.$({-\frac{4}{3},\frac{4}{3}})$C.$({0,\frac{3}{4}})$D.$({-\frac{3}{4},0})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了考查培育的某种植物的生长情况,从试验田中随机抽取100柱该植物进行检测,得到该植物高度的频数分布表如下:
组序高度区间频数频率
 1[230,235)140.14
2[235,240)0.26
3[240,245)0.20
4[245,250)30
5[250,255)10
合计1001.00
(Ⅰ)写出表中①②③④处的数据;
(Ⅱ)用分层抽样法从第3、4、5组中抽取一个容量为6的样本,则各组应分别抽取多少个个体?
(Ⅲ)在(Ⅱ)的前提下,从抽出的容量为6的样本中随机选取两个个体进行进一步分析,求这两个个体中至少有一个来自第3组的概率.

查看答案和解析>>

同步练习册答案