精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=ax2+bx+ca≠0),满足f(0)=2,fx+1)﹣fx)=2x﹣1

(1)求函数fx)的解析式;

(2)当x∈[﹣1,2]时,求函数的最大值和最小值.

(3)若函数gx)=fx)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.

【答案】(1);(2)最大值,最小值;(3).

【解析】

(1)f(0)=2,可以求出c 的值,再利用fx+1)﹣fx)=2x﹣1可以求出ab的值,进而求出函数fx)的解析式;(2)函数fx是二次函数,利用二次函数在[﹣1,2]的单调性可以求出最大值和最小值;(3)利用gx的两个零点分别在区间(﹣1,2)和(2,4)内,列出不等式组,即可求出m的取值范围

(1)由f(0)=2,得c=2,

fx+1)﹣fx)=2x﹣1

2ax+a+b=2x﹣1,故解得:a=1,b=﹣2,

所以fx)=x2﹣2x+2.

(2)fx)=x2﹣2x+2=(x﹣1)2+1,对称轴为x=1[﹣1,2]

所以fx[﹣1,1]单调递减,在(1,2]单调递增

fminx)=f(1)=1,

f(﹣1)=5,f(2)=2,5>2

所以fmaxx)=f(﹣1)=5.

(3)x2﹣(2+mx+2,若gx)的两个零点分别在区间(﹣1,2)和(2,4)内,

则满足

解得:.

故答案为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是函数 (),)的图象上一点,等比数列的前项和为,数列 ()的首项为,且前项和满足: ().

(1).求数列的通项公式;

(2).若数列的通项求数列的前项和;

(3).若数列项和为,试问的最小正整数是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆的极坐标方程为

(1)若直线l与圆相切,求的值;

(2)若直线l与曲线为参数)交于AB两点,点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两运动员进行射击训练.已知他们击中的环数都稳定在环,且每次射击击中与否互不影响甲、乙射击命中环数的概率如下表:

若甲、乙两运动员各射击次,求甲运动员击中环且乙运动员击中环的概率.

若甲射击次,用表示这次射击击中环以上(含环)的次数,求随机变量的分布列及期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+m|x+a|.
(1)当m=a=﹣1时,求不等式f(x)≥x的解集;
(2)不等式f(x)≥2(0<m<1)恒成立时,实数a的取值范围是{a|a≤﹣3或a≥3},求实数m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M、N分别是A1B1、A1C1的中点,BC=AC=CC1 , 则CN与AM所成角的余弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,过点的直线交抛物线位于第一象限)两点.

(1)若直线的斜率为,过点分别作直线的垂线,垂足分别为,求四边形的面积;

(2)若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆.

(1)若点为圆上的动点,求线段中点所形成的曲线的方程;

(2)若直线过点,且被(1)中曲线截得的弦长为2,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】S是实数集R的非空子集,若对任意xyS,都有xyxyxyS,则称S为封闭集.下列命题:①集合S={ab|ab为整数}为封闭集;②若S为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足STR的任意集合T也是封闭集.其中真命题是________.(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案