精英家教网 > 高中数学 > 题目详情
(选修4-4:坐标系与参数方程)在极坐标系中,以极点O为原点,极轴所在直线为x轴建立平面直角坐标系.若曲线C的极坐标方程为p=2cosθ,直线l的参数方程为
x=-1+tcos
π
6
y=tsin
π
6
(t为参数),则直线l与曲线C的位置关系是
 
考点:简单曲线的极坐标方程,参数方程化成普通方程
专题:坐标系和参数方程
分析:把曲线C的极坐标化为直角坐标方程、直线l的参数方程化为普通方程,计算圆心到直线的距离d与半径的大小关系即可判断出.
解答: 解:曲线C的极坐标方程为p=2cosθ,化为ρ2=2ρcosθ,∴x2+y2=2x,配方为(x-1)2+y2=1,可得圆心C(1,0),半径r=1.
直线l的参数方程为
x=-1+tcos
π
6
y=tsin
π
6
(t为参数),化为x-
3
y
+1=0,
∴圆心C到直线的距离d=
1+1
12+(-
3
)2
=1=r.
则直线l与曲线C的位置关系是相切.
故答案为:相切.
点评:本题考查了把圆的极坐标化为直角坐标方程、直线的参数方程化为普通方程、点到直线的距离公式、直线与圆的位置关系判定,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=(
1
2
x-2与y=x3图象的交点坐标为(x0,y0),则x0所在的大致区间(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等腰梯形PDCB中(如图),PB=3,DC=1,PD=BC=
2
,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面PAD⊥面ABCD.
(Ⅰ)证明:平面PAD⊥平面PCD;
(Ⅱ)试在棱PB上确定一点M,使截面AMC把该几何体分成的两部分PDCMA与MACB的体积的比为2:1;
(Ⅲ)在M满足(Ⅱ)的情况下,求二面角M-AC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
12
-
y2
4
=1的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r等于(  )
A、
3
2
B、
6
2
C、
3
4
D、
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示(单位:cm),则该几何体的体积为
 
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1的焦距为10,点P(1,2)在C的渐近线上,则C的方程为(  )
A、
x2
5
-
y2
20
=1
B、
x2
20
-
y2
5
=1
C、
x2
80
-
y2
20
=1
D、
x2
20
-
y2
80
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

在建立两个变量y与x的回归模型中,分别选择了4个不同模型,模型1-4的R2分别为0.98,0.80,0.50,0.25,则其中拟合得最好的模型是(  )
A、模型1B、模型2
C、模型3D、模型4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≤2
y≥|x+1|
,若可行域内存在点使得x+2y-a=0成立,则a的最大值为(  )
A、-1B、1C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

在相距2km的A、B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则B、C两点之间的距离为(  )
A、(
3
-1)km
B、(
3
+1)km
C、
6
km
D、2(
3
+1)km

查看答案和解析>>

同步练习册答案