【题目】为庆祝某校一百周年校庆,展示该校一百年来的办学成果及优秀校友风采,学校准备校庆期间搭建一个扇形展览区,如图,是一个半径为2百米,圆心角为的扇形展示区的平面示意图.点是半径上一点,点是圆弧上一点,且.为了实现“以展养展”,现决定:在线段、线段及圆弧三段所示位置设立广告位,经测算广告位出租收入是:线段处每百米为元,线段及圆弧处每百米均为元.设弧度,广告位出租的总收入为元.
(1)求关于的函数解析式,并指出该函数的定义域;
(2)试问为何值时,广告位出租的总收入最大,并求出其最大值.
科目:高中数学 来源: 题型:
【题目】图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第代“勾股树”所有正方形的个数与面积的和分别为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,底面ABC,,,D,E分别是,的中点.
(Ⅰ)求证:;
(Ⅱ)求二面角的大小;
(Ⅲ)线段上是否存在点F,使平面?若存在,求的值:若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知直线l:xy2=0,抛物线C:y2=2px(p>0).
(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.
①求证:线段PQ的中点坐标为;
②求p的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):
分组 | |||||
频数 | 9 | 23 | 40 | 22 | 6 |
规定:实心球投掷距离在之内时,测试成绩为“良好”,以各组数据的中间值代表这组数据的平均值,将频率视为概率.
(1)求,并估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比.
(2)现在从实心球投掷距离在,之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,求:在被抽取的3人中恰有两人的实心球投掷距离在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌电脑体验店预计全年购入台电脑,已知该品牌电脑的进价为元/台,为节约资金决定分批购入,若每批都购入(为正整数)台,且每批需付运费元,储存购入的电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比(比例系数为),若每批购入台,则全年需付运费和保管费元.
(1)记全年所付运费和保管费之和为元,求关于的函数.
(2)若要使全年用于支付运费和保管费的资金最少,则每批应购入电脑多少台?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com