精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱台中, 侧面与侧面是全等的梯形,若,且.

(Ⅰ)若 ,证明: ∥平面

(Ⅱ)若二面角,求平面与平面所成的锐二面角的余弦值.

【答案】()见解析() .

【解析】试题分析:() 连接,由比例可得,进而得线面平行;

(Ⅱ)过点的垂线,建立空间直角坐标系,不妨设,则求得平面的法向量为,设平面的法向量为,由求二面角余弦即可.

试题解析:

(Ⅰ)证明:连接,梯形 ,

易知:

,则

平面 平面

可得: ∥平面

(Ⅱ)侧面是梯形,

, ,

为二面角的平面角,

均为正三角形,在平面内,过点的垂线,如图建立空间直角坐标系,不妨设,则

,故点

设平面的法向量为,则有:

设平面的法向量为,则有:

故平面与平面所成的锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足 (其中a>0,a≠1)
(Ⅰ)求f(x)的表达式;
(Ⅱ)对于函数f(x),当x∈(﹣1,1)时,f(1﹣m)+f(1﹣m2)<0,求实数m的取值范围;
(Ⅲ)当x∈(﹣∞,2)时,f(x)﹣4的值为负数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,正实数a,b,c是公差为正数的等差数列,且满足.若实数d是方程的一个解,那么下列三个判断:①d<a;②d<b;③d<c中有可能成立的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形的三边长是公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长是(

A. 18 B. 15 C. 21 D. 24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若样本平均数是4,方差是2,则另一样本的平均数和方差分别为( )

A. 12,2 B. 14,6 C. 12,8 D. 14,18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形与梯形全等, 中点.

(Ⅰ)证明: 平面

(Ⅱ)点在线段上(端点除外),且与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某中学高中某学科竞赛中,该中学100名考生的参赛成绩统计如图所示.

(1)求这100名考生的竞赛平均成绩(同一组中数据用该组区间中点作代表);

(2)记70分以上为优秀,70分及以下为合格,结合频率分布直方图完成下表,并判断是否有99%的把握认为该学科竞赛成绩与性别有关?

合格

优秀

合计

男生

18

女生

25

合计

100

附:

0.050

0.010

0.005

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.

(1)求椭圆的方程;

(2)设是椭圆上关于轴对称的任意两个不同的点,连接交椭圆于另一点,证明直线轴相交于定点

(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣2)ex+a(x﹣1)2
(1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围.

查看答案和解析>>

同步练习册答案