精英家教网 > 高中数学 > 题目详情

【题目】将函数y=sin2x的图象向左平移 个单位,再向上平移1个单位,所得图象的函数解析式是(
A.y=2cos2x
B.y=2sin2x
C.
D.y=cos2x

【答案】A
【解析】解:将函数y=sin2x的图象向左平移 个单位,
得到函数 =cos2x的图象,
再向上平移1个单位,所得图象的函数解析式为y=1+cos2x=2cos2x,
故选A.
【考点精析】认真审题,首先需要了解函数y=Asin(ωx+φ)的图象变换(图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,四边形为矩形,且平面 .

(1)求证: 平面

(2)点在线段(含端点)上运动,当点在什么位置时,平面与平面所成锐二面角最大,并求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知AD=PD,PA=6,BC=8,DF=5,求证:

(1)直线PA∥平面DEF;
(2)平面DEF⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:

(1)在给定的坐标系中画出表中数据的散点图;

(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;

(3)试预测加工10个零件需要多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形和菱形所在平面互相垂直,如图,其中,点是线段的中点.

(Ⅰ)试问在线段上是否存在点,使得直线平面?若存在,请证明平面,并求出的值;若不存在,请说明理由;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取名市民,按年龄情况进行统计的频率分布表和频率分布直方图如图

(1)求出表中的的值,并补全频率分布直方图;

(2)媒体记者为了做好调查工作,决定从所随机抽取的市民中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在的选取2名担任主要发言人.记这2名主要发言人年龄在的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在海岛上有一座海拔的山峰,山顶设有一个观察站,有一艘轮船按一固定方向做匀速直线航行,上午时,测得此船在岛北偏东、俯角为处,到时,又测得该船在岛北偏西、俯角为的处.

1)求船的航行速度;

2)求船从行驶过程中与观察站的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

设函数.

(Ⅰ)求的最小值及取得最小值时的取值范围;

(Ⅱ)若集合,求实数的取值范围.

查看答案和解析>>

同步练习册答案