精英家教网 > 高中数学 > 题目详情
7.已知${log_4}(3a+4b)={log_2}\sqrt{2ab}$,则a+b的最小值为$\frac{7+4\sqrt{3}}{2}$.

分析 由${log_4}(3a+4b)={log_2}\sqrt{2ab}$,可得3a+4b=$(\sqrt{2ab})^{2}$=2ab,a,b>0.$\frac{3}{b}+\frac{4}{a}$=2,再利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵${log_4}(3a+4b)={log_2}\sqrt{2ab}$,∴3a+4b=$(\sqrt{2ab})^{2}$=2ab,a,b>0.
∴$\frac{3}{b}+\frac{4}{a}$=2,∴a+b=$\frac{1}{2}$(a+b)$(\frac{3}{b}+\frac{4}{a})$=$\frac{1}{2}$(7+$\frac{3a}{b}$+$\frac{4b}{a}$)≥$\frac{7+2\sqrt{\frac{3a}{b}×\frac{4b}{a}}}{2}$=$\frac{7+4\sqrt{3}}{2}$,
当且仅当$\sqrt{3}$a=2b=3+2$\sqrt{3}$.
则a+b的最小值为$\frac{7+4\sqrt{3}}{2}$,
故答案为:$\frac{7+4\sqrt{3}}{2}$.

点评 本题考查了对数函数的性质、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知集合A={1,3},集合B={3,4},则A∪B等于(  )
A.{1}B.{3}C.{1,3,3,4}D.{1,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.抛物线y2=4x,直线l过焦点且与抛物线交于A(x1,y1),B(x2,y2)两点,x1+x2=3,则AB中点到y轴的距离为(  )
A.3B.$\frac{3}{2}$C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设P表示x+$\frac{4}{x+1}$>4的解集;Q表示不等式|x-1|+|x-2a|>1对任意x∈R恒成立的a的集合,求P∩Q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列通项公式可以作为等比数列通项公式的是(  )
A.an=2nB.${a_n}=\sqrt{n}$C.${a_n}={2^{-n}}$D.an=log2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若f(x)是定义在(0,+∞)上的增函数,且对于任意x>0满足f ($\frac{x}{y}$)=f(x)-f (y).
(1)求f(1)的值;
(2)若f(6)=1,试求解不等式f(x+5)-f ($\frac{1}{x}$)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.抛物线y2=-4x的通径长等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数y=x2+mx-4,x∈[2,4]
(1)求函数的最小值g(m);
(2)若g(m)=10,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题中错误的是(  )
A.命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”
B.命题“角α的终边在第一象限,则α是锐角”的逆命题为真命题
C.已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假
D.命题“若x>y,则x>|y|”的逆命题是真命题

查看答案和解析>>

同步练习册答案