精英家教网 > 高中数学 > 题目详情

. 设函数,点An为函数yfx)图象上横坐标为nn∈N*)的点,O为坐标原点,向量e=(1,0).记为向量e的夹角,,则  45°

   .

2


解析:

因为e=(1,0),所以为直线OAn的倾斜角,从而为直线OAn的斜率.

由题设,点,则.

所以,故45°.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
x2+a
bx-c
有且仅有两个不动点0和2.
(1)试求b、c满足的关系式.
(2)若c=2时,各项不为零的数列{an}满足4Sn•f(
1
an
)=1,求证:(1-
1
an
)an+1
1
e
(1-
1
an
)an

(3)设bn=-
1
an
,Tn为数列{bn}的前n项和,求证:T2009-1<ln2009<T2008

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).数列{an}满足f(an+1)=
1
f(-2-an)
(n∈N*)

(Ⅰ)求f(0)的值,判断并证明函数f(x)的单调性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得点(t,as)、(s,at)都在直线y=kx-1上,试判断是否存在自然数M,当n>M时,an>0恒成立?若存在,求出M的最小值,若不存在,请说明理由;
(Ⅲ)若a1=f(0),不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(1+logf(1)x)
对不小于2的正整数恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

.设函数,点An为函数yfx)图象上横坐标为nn∈N*)的点,O为坐标原点,向量e=(1,0)。记为向量e的夹角,,则              

查看答案和解析>>

科目:高中数学 来源:2007-2008学年浙江省温州市八校联考高三(上)期末数学试卷(文科)(解析版) 题型:填空题

设函数,点A表示坐标原点,点An的坐标为An(n,f(n))(n∈N*),kn表示直线AAn的斜率,设Sn=k1+k2+…+kn,,则Sn=   

查看答案和解析>>

同步练习册答案