精英家教网 > 高中数学 > 题目详情

已知圆及点
(1)在圆上,求线段的长及直线的斜率;
(2)若为圆上任一点,求的最大值和最小值;
(3)若实数满足,求的最大值和最小值.

(1)(2)最小值,最大值(3)的最大值为,最小值为

解析试题分析:(1)将P(a,a+1)代入C:x2+y2-4x-14y+45=0,中得a=4,所以p(4,5),|PQ|=,kpQ=
(2)将圆C:x2+y2-4x-14y+45=0,转化为标准形式(x-2)2+(y-7)2=(2)2圆心C(2,7)|QC|-R≤|MQ|≤|QC|+R,因为|QC|=4,所以2≤|MQ|≤6,所以|MQ|最小值为2,最大值为6
(3)根据题意,实数m,n满足m2+n2-4m-14n+45=0,即满足(m-2)2+(n-7)2=(2)2,则(m,n)对应的点在以(2,7)为圆心,半径为2的圆上,分析可得K=表示该圆上的任意一点与Q(-2,3,)相连所得直线的斜率,设该直线斜率为k,则其方程为y-3=k(x+2),又由d=,解得k=2±即2-≤K≤2+所以的最大值为,最小值为
考点:本题考查了点、线、圆的关系
点评:此类问题考查了直线与圆的方程的综合.考查了学生数形结合的思想,函数的思想,转化和化归的思想的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆.(14分)
(1)此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且(O为坐标原点),求m的值;
(3)在(2)的条件下,求以为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M、N,若OM=ON,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线经过点
(Ⅰ)求以线段CD为直径的圆E的方程;
(Ⅱ)若直线与圆C相交于两点,且为等腰直角三角形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线L:x-2y-5=0与圆C:x2+y2=50.求:
(1)交点A,B的坐标;(2)△AOB的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程为为参数).若直线与圆相交于,两点,且.
(Ⅰ)求圆的直角坐标方程,并求出圆心坐标和半径;
(Ⅱ)求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)若圆与圆相交,求实数m的取值范围;
(2)求圆被直线截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,若直线的方程为,判断直线与圆的位置关系;(2)若直线过定点,且与圆相切,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)已知,圆C:,直线.
(1) 当a为何值时,直线与圆C相切;
(2) 当直线与圆C相交于A、B两点,且时,求直线的方程.

查看答案和解析>>

同步练习册答案