精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的实数根,求f(x)的解析式;
(2)若不等式f(x)<0的解集为R,求a的取值范围.
考点:二次函数的性质
专题:函数的性质及应用
分析:(1)f(x)为二次函数且二次项系数为a,把不等式f(x)>-2x变形为f(x)+2x>0因为它的解集为(1,3),则可设f(x)+2x=a(x-1)(x-3)且a<0,解出f(x);又因为方程f(x)+6a=0有两个相等的根,利用根的判别式解出a的值得出f(x)即可;
(2)因为f(x)为开口向下的抛物线,利用公式当x=-
b
2a
时,最大值为
4ac-b2
4a
<0和a<0联立组成不等式组,求出解集即可.
解答: 解:(1)∵f(x)+2x>0的解集为(1,3)
∴f(x)+2x=a(x-1)(x-3),且a<0
∴f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a①
由方程f(x)+6a=0,得:ax2-(2+4a)x+9a=0②
∵方程②有两个相等的实数根
∴△=[-(2+4a)]2-4a•9a=0,即5a2-4a-1=0
解得:a=1或a=-
1
5

由于a<0,舍去a=1.将a=-
1
5
代入①得:f(x)的解析式是f(x)=-
1
5
x2-
6
5
x-
3
5

(2)由f(x)=ax2-(2+4a)x+3a
故f(x)的最大值为-
a2+4a+1
a

若不等式f(x)<0的解集为R,
则-
a2+4a+1
a
<0,由a<0,
可得a2+4a+1<0
解得-2-
3
<a<-2+
3

故不等式f(x)<0的解集为R时,a的取值范围为(-2-
3
,-2+
3
点评:本小题主要考查二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查函数与方程的数学思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
1-x
定义域为M,g(x)=ex值域为N,则M∩N=(  )
A、[0,1]
B、(0,1]
C、(0,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)经过点(1,20),其导函数f′(x)=4x-22.数列{an}的前n项和为Sn,点(n,Sn)(n∈N+)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{|an|}前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC的三条角平分线交于点O,过点O作OE⊥BC于点E,求证:∠BOD=∠COE.

查看答案和解析>>

科目:高中数学 来源: 题型:

请设计算法框图,要求输入自变量x的值,输出函数f(x)=
-x+1,x≥0
x+3,x<0
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Γ:
x2
4
+y2=1

(1)椭圆Γ的短轴端点分别为A,B(如图),直线AM,BM分别与椭圆Γ交于E,F两点,其中点M(m,
1
2
)满足m≠0,且m≠±
3

①证明直线EF与y轴交点的位置与m无关;
②若△BME面积是△AMF面积的5倍,求m的值;
(2)若圆φ:x2+y2=4.l1,l2是过点P(0,-1)的两条互相垂直的直线,其中l1交圆φ于T、
R两点,l2交椭圆Γ于另一点Q.求△TRQ面积取最大值时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项的和Sn与an的关系是Sn=-an+1-
1
2n
,n∈N*
(Ⅰ)求a1,a2a3并归纳出数列{an}的通项(不需证明);
(Ⅱ)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图甲,圆O的直径AB=2,圆上C,D两点在直径AB的异侧且∠CAB=
π
4
,∠DAB=
π
3
,沿直径AB折起,使得两个半圆所在的平面垂直(如图乙),F为BC的中点.根据图乙解答下列问题:

(1)求三棱锥C-BOD的体积;
(2)求二面角C-AD-B的余弦值;
(3)在弧BD上是否存在点G,使得GF∥平面ACD?若存在,请确定点G位置,并求出直线AG与平面AG与平面ACD所成角的正弦值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足
y≤x
x+y≤1
y≥-1
,则2x-y的最大值是
 

查看答案和解析>>

同步练习册答案