精英家教网 > 高中数学 > 题目详情
设m,n是不同的直线,是不同的平面,下列命题中正确的是
A.若m//
B.若m//
C.若m//
D.若m//
C

试题分析:根据题意,由于A.对于若m//,当m在平面内不成立,可能斜交 ,错误;对于B.若m//,同上错误,对于C.若m//,符合面面垂直的判定定理,成立,对于D.若m//,不一定可能相交,错误,故答案为C.
点评:主要是考查了空间中点线面的位置关系的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱中,侧棱底面,

(Ⅰ)求证:平面
(Ⅱ)若直线与平面所成角的正弦值为,求的值
(Ⅲ)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式。(直接写出答案,不必说明理由)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,是边长为2的正三角形,平面ABC,平面平面ABC,BD=CD,且

(1)若AE=2,求证:AC∥平面BDE;
(2)若二面角A—DE—B为60°.求AE的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面为正方形,
平面为棱的中点.

(1)求证:平面平面
(2)求二面角的余弦值.
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱锥,底面为边长为的正三角形,平面平面,上一点,为底面三角形中心.

(Ⅰ)求证∥面
(Ⅱ)求证:
(Ⅲ)设中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面是直角梯形的四棱锥S-ABCD中,


(1)求四棱锥S-ABCD的体积;
(2)求证:
(3)求SC与底面ABCD所成角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,则下列正确的个数为:( )
①若,则;  ②若,则
③若,则;④若,则
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在棱长为2的正方体内(含正方体表面)任取一点,则的概率(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案