精英家教网 > 高中数学 > 题目详情

【题目】如图,平面α平面βlACα内不同的两点,BDβ内不同的两点,且ABCD直线lMN分别是线段ABCD的中点.下列判断正确的是(  )

A.ABCD,则MNl

B.MN重合,则ACl

C.ABCD相交,且ACl,则BD可以与l相交

D.ABCD是异面直线,则MN不可能与l平行

【答案】BD

【解析】

由若两两相交的平面有三条交线,交线要么相交于一点,要么互相平行判定;用反证法证明

解:若,则四点共面,当时,

平面两两相交有三条交线,分别为,则三条交线交于一点

与平面交于点不平行,故错误;

两点重合,则四点共面

平面两两相交有三条交线,分别为

,得,故正确;

相交,确定平面,平面两两相交有三条交线,分别为

,得,故错误;

是异面直线时,如图,连接,取中点,连接

,则,假设

平面,同理可得,平面,则,与平面平面矛盾.

假设错误,不可能与平行,故正确.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

(1)若,求函数的极值;

(2)若函数上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新《水污染防治法》已由中华人民共和国第十二届全国人民代表大会常务委员会第二十八次会议于2017627日通过,自201811日起施行.201831日,某县某质检部门随机抽取了县域内100眼水井,检测其水质总体指标.

罗斯水质指数

02

24

46

68

810

水质状况

腐败污水

严重污染

污染

轻度污染

纯净

1)求所抽取的100眼水井水质总体指标值的样本平均数(同一组中的数据用该组区间的中点值作代表).

2)①由直方图可以认为,100眼水井水质总体指标值服从正态分布,利用该正态分布,求落在(5.215.99)内的概率;

②将频率视为概率,若某乡镇抽查5眼水井的水质,记这5眼水井水质总体指标值位于(610)内的井数为,求的分布列和数学期望.

附:①计算得所抽查的这100眼水井总体指标的标准差为

②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,直线交椭圆两点,为坐标原点.

1)若直线过椭圆的右焦点,求的面积;

2)若,试问椭圆上是否存在点,使得四边形为平行四边形?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,中点,点上且平面延长线上,,交,且.

1)证明:平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为正项等比数列,a11,数列{bn}满足b23a1b1+a2b2+a3b3+…+anbn3+2n32n

1)求an

2)求的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆.

(Ⅰ)若的一个焦点为,且点上,求椭圆的方程;

(Ⅱ)已知上有两个动点为坐标原点,且,求线段的最小值(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线的焦点,点是抛物线上一点,且,直线过定点(40),与抛物线交于两点,点在直线上的射影是.

1)求的值;

2)若,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面四边形是直角梯形,底面的中点.

1)求证:平面

2)若直线与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案