精英家教网 > 高中数学 > 题目详情

【题目】已知是椭圆的两个焦点,是椭圆上一点,当时,有.

(1)求椭圆的标准方程;

(2)设过椭圆右焦点的动直线与椭圆交于两点,试问在铀上是否存在与不重合的定点,使得恒成立?若存在,求出定点的坐标,若不存在,请说明理由.

【答案】1

2)存在, T40

【解析】

1)由题意,.故.然后设点坐标为,代入椭圆方程,联立椭圆定义,进一步计算可得椭圆的标准方程;

2)假设存在与不重合的定点,使得恒成立,则,设出点坐标代入计算,可得.然后设直线.联立直线与椭圆方程,消去整理可得一元二次方程,根据韦达定理有.然后代入进行计算可判断是否是定值,即可得到结论.

解:(1)由题意,.故

可设点坐标为,则

,解得,即

,解得

椭圆的标准方程为

(2)由题意,假设存在与不重合的定点,使得恒成立,

,且,则

,即

整理,得

设直线

联立

消去,整理得

存在与不重合的定点,使得恒成立,且点坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若函数有两个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列的前n项和为,且当时,2m的等差中项为实数.

1)求m的值及数列的通项公式;

2)令,是否存在正整数k,使得对任意正整数n均成立?若存在,求出k的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系下,已知圆Oρ=cosθ+sinθ和直线l

1)求圆O和直线l的直角坐标方程;

2)当θ∈0π)时,求直线l与圆O公共点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,若过且倾斜角为的直线交两点,满足.

(1)求抛物线的方程;

(2)若上动点,轴上,圆内切于,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两点在抛物线上,AB的垂直平分线,

1)当且仅当取何值时,直线经过抛物线的焦点F?证明你的结论;

2)若,弦AB是否过定点,若过定点,求出该定点,若不过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个口袋有m个白球,n个黑球(m,n ,n 2),这些球除颜色外全部相同。现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,……,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2,3,……,m+n).

(1)试求编号为2的抽屉内放的是黑球的概率p;

(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(x)是x的数学期望,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着智能手机的发展,各种“APP”(英文单词Application的缩写,一般指手机软件)应运而生.某机构欲对A市居民手机内安装的APP的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图.

(Ⅰ)求a的值;

(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;

(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.

1)当时,求l的极坐标方程;

2)当MC上运动且P在线段OM上时,求P点轨迹的极坐标方程.

查看答案和解析>>

同步练习册答案