精英家教网 > 高中数学 > 题目详情

设函数=x+ax2+blnx,曲线y=过P(1,0),且在P点处的切斜线率为2.
(1)求a,b的值;
(2)证明:≤2x-2.

(1)
(2)
 

解析试题分析:(1)             2分
由已知条件得
解得                    5分
(2),由(I)知

                8分

            12分考点:
考点:本题主要考查导数的几何意义,应用导数研究函数的单调性、最值,不等式的证明。
点评:中档题,此类问题属于导数应用的基本问题,往往将单调性、极值、解析式等综合在一起进行考查,应掌握好基本解题方法和步骤。切线的斜率等于函数在切点的导函数值。在某区间,导函数值非负,则函数为增函数;导函数值非正,则函数为减函数。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,若在区间上的最小值为-2,求实数的取值范围;
(3)若对任意,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数在区间上是增函数,在区间上是减函数,又
(1)求的解析式;
(2)若在区间上恒有成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若对任意的恒成立,求实数的最小值.
(2)若且关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)设各项为正的数列满足:求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

题文已知函数.
(1)求函数的单调递减区间;
(2)若不等式对一切恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若,且对于任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)若函数处的切线与轴垂直,求的极值。
(2)若函数,求实数a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(I)若函数在区间(1,2)上不是单调函数,试求的取值范围;
(II)已知,如果存在,使得函数处取得最小值,试求的最大值.

查看答案和解析>>

同步练习册答案