【题目】已知函数.
(1)求曲线在点处的切线方程;
(2)求函数的单调区间及极值;
(3)对成立,求实数的取值范围.
【答案】(1);(2)单调递减区间为,单调递增区间为,极小值为,无极大值;(3).
【解析】
试题分析:(1)由题意切点为,求导可得斜率,即可写出切线方程;(2)对函数求导,判断导函数的正负情况,写出单调区间及极值;(3)对成立,即,构造函数
,求导分别对和分类讨论,单调递增舍去,时再按和分两种情况分别研究单调性和最值,比较最值和的大小关系,求出的范围.
试题解析:解:(1)由题意知的定义域为且,
又∵,
故切线方程为.
(2),
,
当时,则,
此时在上单调递减.
当时,则,此时,
在上单调递增.
故在单调递减区间为,单调递增区间为.
当时,取极小值,且极小值为-2,无极大值
(3)对成立,即,
令,
则当时,恒成立.
因为.
①当时,,在上单调递增,故,
这与恒成立矛盾
②当时,二次方程的判别式,令,解得,此时在上单调递减.
故,满足恒成立.
由得,方程的两根分别是
,其中,
当时,在上单调递增,,
这与恒成立矛盾.
综上可知:
科目:高中数学 来源: 题型:
【题目】如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列三个说法中正确的个数是( )
①存在点E使得直线SA⊥平面SBC
②平面SBC内存在直线与SA平行
③平面ABCE内存在直线与平面SAE平行
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高三数学奥林匹克竞赛集训队的一次数学测试成绩的茎叶图(图1)和频率分布直方图(图2)都受到不同程度的破坏,可见部分如图所示,据此解答如下问题.
(1)求该集训队总人数及分数在[80,90)之间的频数;
(2)计算频率分布直方图中[80,90)的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生的答题情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地参加2015 年夏令营的名学生的身体健康情况,将学生编号为,采用系统抽样的方法抽取一个容量为的样本,且抽到的最小号码为,已知这名学生分住在三个营区,从到在第一营区,从到在第二营区,从到在第三营区,则第一、第二、第三营区被抽中的人数分别为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方体的棱长为1,分别是棱,的中点,过直线的平面分别与棱、交于,设,,给出以下四个命题:
①四边形为平行四边形;
②若四边形面积,,则有最小值;
③若四棱锥的体积,,则为常函数;
④若多面体的体积,,则为单调函数.
其中假命题为( )
A.① ③ B.② C.③④ D.④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在锐角△ABC中,两向量p=(2-2sin A,cos A+sin A),q=(sin A-cos A,1+sin A),且p与q是共线向量.
(1)求A的大小;
(2)求函数y=2sin2B+cos()取最大值时,角B的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的对称轴为,.
(1)求函数的最小值及取得最小值时的值;
(2)试确定的取值范围,使至少有一个实根;
(3)若,存在实数,对任意,使恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com