精英家教网 > 高中数学 > 题目详情
12.在正方体ABCD-A1B1C1D1中.
(1)求直线A1B和平面ABCD所成的角;
(2)求直线A1B和平面A1B1CD所成的角.

分析 (1)由A1A⊥平面ABCD,A为垂足,得∠A1BA是直线A1B和平面ABCD所成的角,由此能求出直线A1B和平面ABCD所成的角的大小.
(2)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线A1B和平面A1B1CD所成的角的大小.

解答 解:(1)在正方体ABCD-A1B1C1D1中,
∵A1A⊥平面ABCD,A为垂足,
∴∠A1BA是直线A1B和平面ABCD所成的角,
∵A1A=AB,A1A⊥AB,
∴∠A1BA=45°,
∴直线A1B和平面ABCD所成的角为45°.
(2)以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
设正方体ABCD-A1B1C1D1的棱长为1,
则A1(1,0,1),B(1,1,0),D(0,0,0),C(0,1,0),
$\overrightarrow{{A}_{1}B}$=(0,1,-1),$\overrightarrow{D{A}_{1}}$=(1,0,1),$\overrightarrow{DC}$=(0,1,0),
设平面A1B1CD的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=x+z=0}\\{\overrightarrow{n}•\overrightarrow{DC}=y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,-1),
设直线A1B和平面A1B1CD所成的角为θ,
则sinθ=|$\frac{\overrightarrow{{A}_{1}B}•\overrightarrow{n}}{|\overrightarrow{{A}_{1}B}|•|\overrightarrow{n}|}$|=|$\frac{1}{\sqrt{2}×\sqrt{2}}$|=$\frac{1}{2}$,
∴θ=30°,
∴直线A1B和平面A1B1CD所成的角为30°.

点评 本题考查线面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养和向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,P是正方形ABCD所在平面外一点,PA⊥平面ABCD,AE⊥PD,PA=3AB.求直线AC与平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若A∩B=B,则实数m的取值范围是(  )
A.2≤m≤3B.m≤3C.2<m≤3D.m≤2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$函数g(x)=3-f(2-x),则函数y=f(x)-g(x)的零点个数为2个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥A一BCD中,△ABD为正三角形,底面BCD为等腰直角三角形,且∠BCD=90°,CD=2,二面角A-BD-C的余弦值为$\frac{\sqrt{3}}{3}$.
(1)证明:AC⊥平面BCD;
(2)在线段BD上是否存在点P,使直线AB与平面ACP所成角的正弦值为$\frac{\sqrt{5}}{10}$?若存在,确定点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列叙述正确的是(  )
A.若|a|=|b|,则a=bB.若|a|>|b|,则a>bC.若a<b,则|a|>|b|D.若|a|=|b|,则a=±b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=ex+$\frac{x}{x+1}$.
(1)求证:函数f(x)的唯一零点x0∈(-$\frac{1}{2}$,0);
(2)求证:对任意λ>0,存在μ<0,使得f(x)<0在(-1,λμ)上恒成立;
(3)设g(x)=f(x)-x=($\frac{1}{2}$)h(x)-1,当x>0时,比较g(x)与h(x)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)=2cosx(cosx-sinx)+sin2x,x∈R.
(1)求该函数的最小正周期;
(2)请你限定一个闭区间D,求函数y=f(x),x∈D的反函数y=f-1(x),并指出y=f-1(x)的奇偶性、单调性、零点.(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤2\\ f(x-1),x>2\end{array}\right.$,则$f(\frac{9}{2})$=2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案