精英家教网 > 高中数学 > 题目详情

【题目】据气象中心观察和预测:发生于甲地的沙尘暴一直向正南方向移动,其移动速度与时间的函数图象图所示,过线段上一点作横轴的垂线,梯形在直线左侧部分的面积即为内沙尘暴所经过的路程.

1 时,求的值;

2)将变化的规律用数学关系式表示出来;

3)若乙城位于甲地正南方向,且距甲地,试判断这场沙尘暴是否会侵袭到乙城,如果会,在沙尘暴发生后多长时间它将侵袭到乙城?如果不会,请说明理由.

【答案】1;(2;(3)会,.

【解析】

1)作出图形,设直线分别交直线于点,可知的值为直角梯形的面积,进而得解;

2)分三种情况讨论,分析直线左侧图形的形状,计算出其面积,即为关于的函数表达式;

3)分三种情况解方程,求出值,即为所求时间.

1)设直线分别交直线于点,则

的值为直角梯形的面积,所以,

(2)当时,此时(如图);

时,此时(如图),

时,的坐标分别为

直线的解析式为点坐标为(如图.

综上,

3)沙尘暴会侵袭到乙城.

时,

时,

时,令,解得

.

所以沙尘暴发生后侵袭到乙城.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出以下关于线性方程组解的个数的命题.

①,②,③,

1)方程组①可能有无穷多组解;

2)方程组②可能有且只有两组不同的解;

3)方程组③可能有且只有唯一一组解;

4)方程组④可能有且只有唯一一组解.

其中真命题的序号为________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列同时满足:①对于任意的正整数 恒成立;②对于给定的正整数 对于任意的正整数恒成立,则称数列是“数列”.

(1)已知判断数列是否为“数列”,并说明理由;

(2)已知数列是“数列”,且存在整数,使得 成等差数列,证明: 是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心C在直线上的圆过两点.

1)求圆C的方程;

2)若直线与圆C相交于AB两点,①当时,求AB的方程;②在y轴上是否存在定点M,使,若存在,求出M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列满足:对任意正整数,都有成等差数列,成等比数列,且

)求证:数列是等差数列;

)求数列的通项公式;

)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是相似椭圆,并将三角形的相似比称为椭圆的相似比.已知椭圆

1)若椭圆,判断是否相似?如果相似,求出的相似比;如果不相似,请说明理由;

2)写出与椭圆相似且焦点在轴上、短半轴长为的椭圆的标准方程;若在椭圆上存在两点关于直线对称,求实数的取值范围;

3)如图:直线与两个相似椭圆分别交于点和点,试在椭圆和椭圆上分别作出点和点(非椭圆顶点),使组成以为相似比的两个相似三角形,写出具体作法.(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学在高二下学期开设四门数学选修课,分别为《数学史选讲》.《球面上的几何》.《对称与群》.《矩阵与变换》.现有甲.乙.丙.丁四位同学从这四门选修课程中选修一门,且这四位同学选修的课程互不相同,下面关于他们选课的一些信息:①甲同学和丙同学均不选《球面上的几何》,也不选《对称与群》:②乙同学不选《对称与群》,也不选《数学史选讲》:③如果甲同学不选《数学史选讲》,那么丁同学就不选《对称与群》.若这些信息都是正确的,则丙同学选修的课程是(  )

A. 《数学史选讲》B. 《球面上的几何》C. 《对称与群》D. 《矩阵与变换》

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设整数是区间中的不同整数.证明:集合有这样的子集存在,它的所有元素之和能被整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

是函数的极值点,1是函数的一个零点,求的值;

时,讨论函数的单调性;

若对任意,都存在,使得成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案