精英家教网 > 高中数学 > 题目详情

【题目】不等式对任意实数都成立,则实数的取值范围_________

【答案】

【解析】

根据题意,分2种情况讨论:1°若a210,则a=±1,分别验证a1或﹣1时,是否能保证该不等式满足对任意实数x都成立,

2°若a210,不等式(a21x2+a1x10为二次不等式,结合二次函数的性质,解可得此时a的范围,综合可得答案.

根据题意,分2种情况讨论:

1°若a210,则a=±1

a1时,不等式(a21x2+a1x10为:﹣10

满足对任意实数x都成立,则a1满足题意,

a=﹣1时,不等式(a21x2+a1x10为:﹣2x0

不满足对任意实数x都成立,则a=﹣1不满足题意,

2°若a210,不等式(a21x2+a1x10为二次不等式,

要保证(a21x2+a1x10对任意实数x都成立,

必须有

解可得:a1

综合可得a1

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某农场有一块等腰直角三角形的空地,其中斜边的长度为400.为迎接“五一”观光游,欲在边界上选择一点,修建观赏小径,其中分别在边界上,小径与边界的夹角都为.区域和区域内种植郁金香,区域内种植月季花.

1)探究:观赏小径的长度之和是否为定值?请说明理由;

2)为深度体验观赏,准备在月季花区域内修建小径,当点在何处时,三条小径的长度和最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求不等式的解集;

(2)若不等式的解集包含,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个动点到点的距离比到直线的距离多1.

(1)求动点的轨迹的方程;

(2)若过点的直线与曲线交于两点,且线段中点是点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求不等式的解集;

(2)若不等式的解集包含,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对函数f(x)xsinx,现有下列命题:函数f(x)是偶函数;函数f(x)的最小正周期是0)是函数f(x)的图象的一个对称中心;函数f(x)在区间上单调递增,在区间上单调递减.其中是真命题的是________(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车是碳排放量比较大的交通工具,某地规定,从2017年开始,将对二氧化碳排放量超过130 g/km的轻型汽车进行惩罚性征税,检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km):

80

110

120

140

150

100

120

x

100

160

经测算得乙品牌轻型汽车二氧化碳排放量的平均值为=120 g/km.

(1)求表中x的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性;

(2)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过130 g/km的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届安徽省合肥市高三第一次教学质量检测】一家大型购物商场委托某机构调查该商场的顾客使用移动支付的情况.调查人员从年龄在内的顾客中,随机抽取了180人,调查结果如表:

1)为推广移动支付,商场准备对使用移动支付的顾客赠送1个环保购物袋.若某日该商场预计有12000人购物,试根据上述数据估计,该商场当天应准备多少个环保购物袋?

2)某机构从被调查的使用移动支付的顾客中,按分层抽样的方式抽取7人作跟踪调查,并给其中2人赠送额外礼品,求获得额外礼品的2人年龄都在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点的直线轴正半轴和轴正半轴分别交于

1)当的中点时,求的方程

2)当最小时,求的方程

3)当面积取到最小值时,求的方程

查看答案和解析>>

同步练习册答案