精英家教网 > 高中数学 > 题目详情
求f(x)=
-x2-4x+5
的定义域.
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:直接由根式内部的代数式大于等于0求解一元二次不等式得答案.
解答: 解:由-x2-4x+5≥0,得x2+4x-5≤0,
即(x-1)(x+5)≤0.
解得:-5≤x≤1.
∴f(x)=
-x2-4x+5
的定义域为[-5,1].
点评:本题考查了函数的定义域及其求法,考查了不等式的解法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A和B,称A-B={x|x∈A且x∉B}是A与B的差集,根据上述定义完成下列问题:
(1)已知A={1,2,3,4,5},B={2,4,6,7},求A-B;
(2)已知A={x|-2<x<2},B={x|-1<x<6},求A-B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线kx+y+k+2=0恒经过一个定点,则过这一定点和原点的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个内角A、B、C所对的边分别为a,b,c,asinAsinB+bcos2A=
2
a,则
b
a
=(  )
A、2
3
B、2
2
C、
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+sinxcosx(x∈R)
(1)求f(
8
)的值;
(2)若f(
x0
2
)=
3
4
,x0∈(
π
4
π
2
),求sinx0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U={x|0<x<9,且x∈Z},集合S={1,3,5},T={3,6},求:
(1)S∩T
(2)∁U(S∪T).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x-cosx,{an}是公差为
π
8
的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2-a1a5=(  )
A、0
B、
1
16
π2
C、
1
8
π2
D、
13
16
π2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
ablnx
x
,g(x)=-
1
2
x+(a+b)(其中e为自然对数的底数,a,b∈R且a≠0),曲线y=f(x)在点(1,f(1))处的切线方程为y=ae(x-1).
(1)求b的值;
(2)若对任意x∈[
1
e
,+∞),f(x)与g(x)有且只有两个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过D(2,0),E(1,
3
2
)两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设斜率为k且不过原点O的直线l与椭圆C交于两点M、N,若直线OM、ON的斜率分别为k1,k2,且满足k2=k1•k2,求△OMN面积的取值范围.

查看答案和解析>>

同步练习册答案