精英家教网 > 高中数学 > 题目详情

椭圆E的中心在原点O,焦点在轴上,其离心率, 过点C(-1,0)的直线与椭圆E相交于A、B两点,且满足点C分向量的比为2.

(1)用直线的斜率k ( k≠0 ) 表示△OAB的面积;(2)当△OAB的面积最大时,求椭圆E的方程。

解:(1)设椭圆E的方程为( ab>0 ),由e =

a2=3b2   故椭圆方程x2 + 3y2 = 3b2

A(x1,y1)、B(x2,y2),由于点C(-1,0)分向量的比为2,

 
             即

消去y整理并化简得    (3k2+1)x2+6k2x+3k2-3b2=0

由直线l与椭圆E相交于Ax1,y1), B(x2,y2)两点得:

 
  

SOAB  ⑤

由①③得:x2+1=-,代入⑤得:SOAB  =

(2)因SOAB=,

当且仅当SOAB取得最大值

此时 x1 + x2 =-1, 又∵  =-1    ∴x1=1,x2 =-2

x1,x2k2 = 代入④得3b2 = 5 ∴椭圆方程x2 + 3y2 = 5

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆E的中心在原点O,焦点在x轴上,离心率e=
2
3
,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:
CA
BC
(λ≥2).
(1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积;
(2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程;
(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年黑龙江省鸡西市高三上学期期末理科数学卷 题型:解答题

椭圆E的中心在原点O,焦点在x轴上,离心率e=,过点C(-1,0)的直线交椭圆于A,B两点,且满足为常数。

(1)当直线的斜率k=1且时,求三角形OAB的面积.

(2)当三角形OAB的面积取得最大值时,求椭圆E的方程.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)椭圆E的中心在原点O,焦点在x轴上,离心率e=,过点C(-1,0)的直线交椭圆于A,B两点,且满足为常数。

       (1)当直线的斜率k=1且时,求三角形OAB的面积.

       (2)当三角形OAB的面积取得最大值时,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源:2010年河南省郑州47中高考模拟数学试卷(解析版) 题型:解答题

椭圆E的中心在原点O,焦点在x轴上,离心率,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:(λ≥2).
(1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积;
(2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程;
(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程.

查看答案和解析>>

同步练习册答案