【题目】设0<a≤ ,若满足不等式|x﹣a|<b的一切实数x,亦满足不等式|x﹣a2|< ,求实数b的取值范围.
【答案】解:解:由题意可得b>0是不用求的,否则|x﹣a|<b都没解了.
故有﹣b<x﹣a<b,即a﹣b<x<a+b.
由不等式|x﹣a2|< 得,﹣ <x﹣a2< ,即 a2﹣ <x<a2+ .
第二个不等式的范围要大于第一个不等式,这样只要满足了第一个不等式,
肯定满足第二个不等式,命题成立.
故有 a2﹣ ≤a﹣b,且 a+b≤a2+ ,0<a≤ .
化简可得 b≤﹣a2+a+ ,且b≤a2﹣a+ .
由于﹣a2+a+ =﹣(a﹣ )2+ ∈[ , ],故 b≤ .
由于 a2﹣a+ =(a﹣ )2+ ∈[ , ].故 b≤ .
综上可得 0<b≤
【解析】由题意可得b>0,求出这两个不等式的解集,由题意可得 a2﹣ ≤a﹣b,且 a+b≤a2+ ,0<a≤ .由此可得b小于或等于﹣a2+a+ 的最小值,且b小于或等于 a2﹣a+ 的最小值,由此求得实数b的取值范围.
科目:高中数学 来源: 题型:
【题目】函数f(x)=loga(3﹣ax)(a>0,a≠1)
(1)当a=2时,求函数f(x)的定义域;
(2)是否存在实数a,使函数f(x)在[1,2]递减,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对定义域分别为D1 , D2的函数y=f(x),y=g(x),规定:函数h(x)= ,f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),则h(x)的单调减区间是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x2﹣ax﹣1,x∈[﹣5,5]
(1)当a=2,求函数f(x)的最大值和最小值;
(2)若函数f(x)在定义域内是单调函数,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com