【题目】已知为直平行六面体.命题为正方体;命题的任意体对角线与其不相交的面对角线垂直.则命题是命题的( )条件 .
A. 充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要
科目:高中数学 来源: 题型:
【题目】已知函数是上的偶函数,对于任意都有成立,当,且时,都有.给出以下三个命题:
①直线是函数图像的一条对称轴;
②函数在区间上为增函数;
③函数在区间上有五个零点.
问:以上命题中正确的个数有( ).
A.个B.个C.个D.个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将各项均为整数的数列排成如图所示的三角形数阵(第行有个数,同一行中,下标小的数排在左边).表示数阵中第行第1列的数.
已知数列为等比数列,且从第3行开始,各行均构成公差为的等差数列,,,.
(1)求数阵中第行 第列的数 (用 、表示);
(2)求的值;
(3)2013是否在该数阵中,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,为了测量某一隧道两侧A、B两地间的距离,某同学首先选定了不在直线AB上的一点C(中∠A、∠B、∠C所对的边分别为a、b、c),然后确定测量方案并测出相关数据,进行计算.现给出如下四种测量方案;①测量∠A,∠C,b;②测量∠A,∠B,∠C;③测量a,b,∠C;④测量∠A,∠B,a,则一定能确定A、B间距离的所有方案的序号为( )
A.①③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取,)
A.16B.17C.24D.25
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合, 是集合的所有子集组成的集合.若集合满足对任意的映射,总存在,使得成立,其中,表示集合的子集的补集,为给定的正整数.试求所有满足上述条件的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.
根据频率分布直方图,估计这50名同学的数学平均成绩;
用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
①若,则奖励玩具一个;
②若,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(Ⅰ)求小亮获得玩具的概率;
(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,分别为椭圆:的左右焦点,已知椭圆上的点到焦点,的距离之和为4.
(1)求椭圆的方程;
(2)过点作直线交椭圆于,两点,线段的中点为,连结并延长交椭圆于点(为坐标原点),若,,等比数列,求线段的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com