精英家教网 > 高中数学 > 题目详情

【题目】已知为直平行六面体.命题为正方体;命题的任意体对角线与其不相交的面对角线垂直.则命题是命题的( )条件 .

A. 充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要

【答案】C

【解析】

充分性显然成立,下面证明必要性成立.

如下左图,上下底面为平行四边形,各个侧面均为矩形.

作体对角线在平面上的射影.

因为平面平面,所以,点的垂足必在直线上,在平面上的射影分别为.平面上的图形如下右图.

,知四边形是平行四边形,其对角线的交点为.

,由三垂线定理知..

因为点的距离等于点的距离等于,且是等腰两腰上高的交点,所以,也是等腰三角形.

从而,点重合,且.

故侧面是正方形.

同理,其他侧面四边形均为正方形.

又点分别与重合,由此可得底面四边形为正方形.

综上,六面体为正方体.

故答案为:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数,对于任意都有成立,当,且时,都有.给出以下三个命题:

①直线是函数图像的一条对称轴;

②函数在区间上为增函数;

③函数在区间上有五个零点.

问:以上命题中正确的个数有( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将各项均为整数的数列排成如图所示的三角形数阵(第行有个数,同一行中,下标小的数排在左边).表示数阵中第行第1列的数.

已知数列为等比数列,且从第3行开始,各行均构成公差为的等差数列,.

(1)求数阵中第 列的数 (用 表示);

(2)求的值;

(3)2013是否在该数阵中,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,为了测量某一隧道两侧AB两地间的距离,某同学首先选定了不在直线AB上的一点C中∠A、∠B、∠C所对的边分别为abc),然后确定测量方案并测出相关数据,进行计算.现给出如下四种测量方案;①测量∠A,∠Cb;②测量∠A,∠B,∠C;③测量abC;④测量∠ABa,则一定能确定AB间距离的所有方案的序号为(

A.①③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( .(取

A.16B.17C.24D.25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合是集合的所有子集组成的集合.若集合满足对任意的映射,总存在,使得成立,其中,表示集合的子集的补集,为给定的正整数.试求所有满足上述条件的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.

根据频率分布直方图,估计这50名同学的数学平均成绩;

用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某儿童乐园在六一儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为xy.奖励规则如下:

,则奖励玩具一个;

,则奖励水杯一个;

其余情况奖励饮料一瓶.

假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.

)求小亮获得玩具的概率;

)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,分别为椭圆:的左右焦点,已知椭圆上的点到焦点,的距离之和为4.

(1)求椭圆的方程;

(2)过点作直线交椭圆,两点,线段的中点为,连结并延长交椭圆于点(为坐标原点),若,,等比数列,求线段的方程.

查看答案和解析>>

同步练习册答案