精英家教网 > 高中数学 > 题目详情
若方程
x2
9-k
+
y2
k-1
=1
表示椭圆,则k的取值范围是(  )
分析:根据方程
x2
9-k
+
y2
k-1
=1
表示椭圆,可得9-k>0,k-1>0,且9-k≠k-1,从而可求k的取值范围.
解答:解:∵方程
x2
9-k
+
y2
k-1
=1
表示椭圆
∴9-k>0,k-1>0,且9-k≠k-1
∴1<k<9,且k≠5
∴k的取值范围是(1,5)∪(5,9)
故选C.
点评:本题考查椭圆的标准方程,考查解不等式,忽视9-k≠k-1,是本题的易错点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:y=kx+1,椭圆E:
x2
9
+
y2
m2
=1(m>0)

(Ⅰ)若不论k取何值,直线l与椭圆E恒有公共点,试求出m的取值范围及椭圆离心率e关于m的函数关系式;
(Ⅱ)当k=
10
3
时,直线l与椭圆E相交于A,B两点,与y轴交于点M.若
AM
=2
MB
,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次曲线Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分别求出方程表示椭圆和双曲线的条件;
(2)若双曲线Ck与直线y=x+1有公共点且实轴最长,求双曲线方程;
(3)m、n为正整数,且m<n,是否存在两条曲线Cm、Cn,其交点P与点F1(-
5
,0),F2(
5
,0)
满足PF1⊥PF2,若存在,求m、n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次曲线Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分别求出方程表示椭圆和双曲线的条件;
(2)对于点P(-1,0),是否存在曲线Ck交直线y=x+1于A、B两点,使得
AB
=-2
BP
?若存在,求出k的值;若不存在,说明理由;
(3)已知Ck与直线y=x+1有公共点,求其中实轴最长的双曲线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次曲线Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分别求出方程表示椭圆和双曲线的条件;
(2)若双曲线Ck与直线y=x+1有公共点且实轴最长,求双曲线方程;
(3)m、n为正整数,且m<n,是否存在两条曲线Cm、Cn,其交点P与点F1(-
5
,0),F2(
5
,0)
满足PF1⊥PF2,若存在,求m、n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l:y=kx+1,椭圆E:
x2
9
+
y2
m2
=1(m>0)

(Ⅰ)若不论k取何值,直线l与椭圆E恒有公共点,试求出m的取值范围及椭圆离心率e关于m的函数关系式;
(Ⅱ)当k=
10
3
时,直线l与椭圆E相交于A,B两点,与y轴交于点M.若
AM
=2
MB
,求椭圆E的方程.

查看答案和解析>>

同步练习册答案