精英家教网 > 高中数学 > 题目详情
4.实数x,y=$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,则z=$\frac{y}{x}+\frac{x}{y}$的取值范围是(  )
A.[$\frac{1}{3},\frac{10}{3}$]B.[$\frac{1}{3},\frac{5}{2}$]C.[2,$\frac{5}{2}$]D.[2,$\frac{10}{3}$]

分析 设k=$\frac{y}{x}$,则z=k+$\frac{1}{k}$,作出不等式组对应的平面区域,求出k的取值范围即可得到结论.

解答 解:设k=$\frac{y}{x}$,则z=k+$\frac{1}{k}$,
作出不等式组对应的平面区域如图:
则k的几何意义为区域内的点到原点的斜率,
由图象知OA的斜率最大,OB的斜率最小,
由$\left\{\begin{array}{l}{y=2}\\{x+2y-5=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),则OA的斜率k=2,
由$\left\{\begin{array}{l}{x-y-2=0}\\{x+2y-5=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,即B(3,1),则OB的斜率k=$\frac{1}{3}$,
则$\frac{1}{3}$≤k≤2,
∴z=k+$\frac{1}{k}$≥2$\sqrt{k•\frac{1}{k}}$=2,
当k=$\frac{1}{3}$时,z=$\frac{1}{3}$+3=$\frac{10}{3}$,
当k=2时,z=2+$\frac{1}{2}$=$\frac{5}{2}$,
则z的最大值为$\frac{10}{3}$,
则2≤z≤$\frac{10}{3}$,
即z的取值范围是[2,$\frac{10}{3}$],
故选:D.

点评 本题主要考查线性规划以及直线斜率的求解,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.解不等式组$\left\{\begin{array}{l}{-{x}^{2}-x+6<0}\\{|x-3|≤5}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知奇函数f(x)在(0,+∞)上是增函数,且f(2)=0,则不等式x[f(x)-f(-x)]<0的解集为(  )
A.{x|-2<x<0或x>2}B.{x|x<-2或0<x<2}C.{x|x<-2或x>2}D.{x|-2<x<0或0<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直角三角形ABC的三边之和为2,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a,b,c都是正整数,且3a=4b=6c,证明:$\frac{2}{a}$+$\frac{1}{b}$=$\frac{2}{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将函数y=2x的图象向右平移1个单位就得到函数y=$\frac{{2}^{x}}{2}$的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥1}\\{2x,x<1}\end{array}\right.$,求f(-2),f(2),f(1+x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,函数f(x)的图象是折线段ABC,其中A、B、C的坐标分别为(0,4)、(2,0)、(6,4).
(1)求f[f(0)]的值;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=-x2+3x,直线l1:x=t和l2:x=t+1(其中0≤t≤2,t为常数),若直线l1,l2,x轴与函数y=f(x)的图象所围成的封闭图形的面积为S,则S的最大值为(  )
A.2B.$\frac{11}{6}$C.$\frac{13}{6}$D.3

查看答案和解析>>

同步练习册答案