精英家教网 > 高中数学 > 题目详情

已知等差数列{an}的公差为d=2,首项a1=5.

(1)求数列{an}的前n项和Sn

(2)设Tn=n(2an-5),求S1,S2,S3,S4,S5,T1,T2,T3,T4,T5,并归纳Sn,Tn的大小规律.

(1)Sn=5n+×2=n(n+4);

(2)Tn=n(2an-5)=n[2(2n+3)-5]=4n2+n.

∴S1=5,S2=12,S3=21,S4=32,S5=45,

T1=5,T2=18,T3=39,T4=68,T5=105.

由此可知S1=T1,当n≥2(n∈N)时,Sn<Tn

归纳,当n≥2,n∈N时,Sn<Tn.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案