精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,圆的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的参数方程为为参数)

(1)求圆的直角坐标方程和直线的普通方程;

(2)若直线与圆相切,求实数的值;

【答案】(1)4x﹣3y﹣2=0,(x﹣a)2+y2=a2;(2)-2

【解析】

(1)利用直线的参数方程与普通方程的互化,得到直角方程,然后根据ρ2=x2+y2,x=ρcosθ,y=ρsinθ得到圆的直角坐标方程.(2)根据直线l与圆C相切,建立等式关系,解之即可.

(1)(t为参数),∴消去参数t4x﹣3y﹣2=0,

ρ=2acosθ,ρ2=2aρcosθ,则x2+y2=2ax,即(x﹣a)2+y2=a2

(2)∵直线l与圆C相切,

,解得,a=﹣2

∴实数a的值为﹣2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆)的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.

(Ⅰ)求椭圆的方程;

(Ⅱ)设过点的直线与椭圆交于点不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x,y的不等式组 表示的平面区域内存在点P(x0 , y0),满足x0﹣2y0=2,求得m的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人进行某项对抗性游戏,采用“七局四胜”制,即先赢四局者为胜,若甲、乙两人水平相当,且已知甲先赢了前两局.

求乙取胜的概率;

记比赛局数为X,求X的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C,直线l

时,若圆C与直线l交于AB两点,过点AB分别作l的垂线与y轴交于DE两点,求的值;

过直线l上的任意一点P作圆的切线为切点,若平面上总存在定点N,使得,求圆心C的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校青年职工、中年职工、老年职工的人数之比为7:5:3,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 若样本中的青年职工为14人,则样本容量为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣10|+|x﹣20|,且满足f(x)<10a+10(a∈R)的解集不是空集.
(Ⅰ)求实数a的取值集合A
(Ⅱ)若b∈A,a≠b,求证aabb>abba

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|ax﹣2|.
(1)若关于x的不等式f(x)<3的解集为(﹣ ),求a的值;
(2)f(x)+f(﹣x)≥a对于任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA平面ABCD,PB、PD与平面ABCD所成角的正切值依次是1、,AP=2,E、F依次是PB、PC的中点.

(1)求证:PB平面AEFD;

(2)求直线EC与平面PAD所成角的正弦值.

查看答案和解析>>

同步练习册答案