精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间 上的最小值和最大值.

【答案】
(1)解: f(x)=2cosx(sinx﹣cosx)+1=sin2x﹣cos2x=

因此,函数f(x)的最小正周期为π.


(2)解:因为 在区间 上为增函数,在区间 上为减函数,

故函数f(x)在区间 上的最大值为 ,最小值为﹣1


【解析】(1)先利用二倍角公式和两角和公式对函数解析式化简整理,然后利用正弦函数的性质求得函数的最小正周期.(2)根据正弦函数的单调性和x的范围,进而求得函数的最大和最小值.
【考点精析】解答此题的关键在于理解三角函数的最值的相关知识,掌握函数,当时,取得最小值为;当时,取得最大值为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga (a>0,a≠1)是奇函数.
(1)求实数m的值;
(2)当x∈(n,a﹣2)时,函数f(x)的值域是(1,+∞),求实数a与n的值;
(3)设函数g(x)=﹣ax2+8(x﹣1)afx﹣5,a≥8时,存在最大实数t,使得x∈(1,t]时﹣5≤g(x)≤5恒成立,请写出t与a的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线的参数方程为为参数).以平面直角坐标系的原点为极点, 轴正半轴为极轴,取相同的单位长度建立极坐标系,直线 的极坐标方程为 .

(1)试写出直线的直角坐标方程和曲线的普通方程;

(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斜三棱柱A1B1C1﹣ABC中,侧面AA1C1C⊥底面ABC,侧面AA1C1C是菱形,∠A1AC=60°,AC=3,AB=BC=2,E、F分别是A1C1 , AB的中点.
(1)求证:EF∥平面BB1C1C;
(2)求证:CE⊥面ABC.
(3)求四棱锥E﹣BCC1B1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲乙两班各6名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图,则甲班样本数据的众数和乙班样本数据的中位数分别是(

A.170,170
B.171,171
C.171,170
D.170,172

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形, ,点E在棱PB上.

(Ⅰ)求证:平面

(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}是等差数列,首项a1>0,a2003+a2004>0,a2003 . a2004<0,则使前n项和Sn>0成立的最大自然数n是(
A.4005
B.4006
C.4007
D.4008

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的是:( )

A. 命题“若,则”的否命题为“若,则

B. 命题“存在,使得”的否定是:“任意,都有

C. 若命题“非”与命题“”都是真命题,那么命题一定是真命题

D. 命题“若,则”的逆命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知cosα= ,cos(α+β)=﹣ ,且α,β∈(0, ),则cos(α﹣β)的值等于(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

同步练习册答案