精英家教网 > 高中数学 > 题目详情
已知f(x)=ln(x+1),g(x)=
1
2
ax2+bx

(Ⅰ)若b=2,且h(x)=f(x-1)-g(x)存在单调递减区间,求a的取值范围;
(Ⅱ)若a=0,b=1时,求证:f(x)-g(x)≤0对于x∈(-1,+∞)恒成立;
(III)证明:若0<x<y,则xlnx+ylny>(x+y)ln
x+y
2
分析:(I)求出h(x)的导函数,由于h(x)存在单调递减区间等价于h′(x)<0有解,通过对二次项系数的讨论,求出a的范围.
(II)构造函数φ(x),求出φ(x)的导数,列出x,φ′(x),φ(x)的变化情况表,求出φ(x)的最大值,证出不等式.
(III)作差,利用对数的运算性质化简差,利用(II)的结论,证出要证的不等式.
解答:解:(Ⅰ)b=2时h(x)=lnx-
1
2
ax2-2x,h(x)=
1
x
-ax-2

∵h(x)有单调递减区间,∴h′(x)<0有解,即
1-ax2-2x
x
<0
有解,
∵x>0,∴ax2+2x-1>0有解,.(2分)
①a≥0时合题意
②a<0时,△=4+4a>0,即a>-1,
∴a的取值范围是(-1,+∞).(4分)
(Ⅱ)设?(x)=f(x)-g(x)=ln(x+1)-x
?(x)=
1
x+1
-1=
-x
x+1

x (-1,0) 0 (0,+∞)
?′(x) + 0 -
?(x) 最大值
∵当x=0时,?(x)有最大值0∴?(x)≤0恒成立.
即f(x)-g(x)≤0对于x∈(-1,+∞)恒成立.(8分)
(III)xlnx+ylny-(x+y)ln
x+y
2
=x(lnx-ln
x+y
2
)+y(lny-ln
x+y
2
)

=xln
2x
x+y
+yln
2y
x+y
=-xln
x+y
2x
-yln
x+y
2y

=-xln(1+
y-x
2x
)-yln(1+
x-y
2y
)
.(10分)
当0<x<y时,
y-x
2x
>-1,
x-y
2y
>-1

由(2)知xlnx+ylny-(x+y)ln
x+y
2
≥-x•
y-x
2x
-y•
x-y
2y
=0
.(12分)
等号在
y-x
2x
=
x-y
2y
=0
,即x=y时成立.
而y>x>0,所以xlnx+ylny-(x+y)ln
x+y
2
>0
成立.(14分)
点评:解决不等式恒成立问题与不等式有解问题常转化为求函数的相应的最值问题;证明不等式成立也常常通过构造函数,转化为求函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ln(1+x)-
x1+ax
(a>0).
(I) 若f(x)在(0,+∞)内为单调增函数,求a的取值范围;
(II) 若函数f(x)在x=O处取得极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)在区间D上有定义,且对任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,则称函数f(x)在区间D上的“凹函数”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判断f(x)是否是“凹函数”,若是,请给出证明;若不是,请说明理由;
(Ⅱ)对于(I)中的函数f(x)有下列性质:“若x∈[a,b],则存在x0(a,b)使得
f(b)-f(a)
b-a
=f′(x0)”成立.利用这个性质证明x0唯一;
(Ⅲ)设A、B、C是函数f(x)=ln(1+ex)-x(x∈R)图象上三个不同的点,求证:△ABC是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(x+1).
(1)若g(x)=
1
4
x2-x+f(x)
,求g(x)在[0,2]上的最大值与最小值;
(2)当x>0时,求证
1
1+x
<f(
1
x
)<
1
x

(3)当n∈N+且n≥2时,求证:
1
2
+
1
3
+
1
4
+…+
1
n+1
<f(n)<1+
1
2
+
1
3
+…+
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(x+1)-ax(a∈R)
(1)当a=1时,求f(x)在定义域上的最大值;
(2)已知y=f(x)在x∈[1,+∞)上恒有f(x)<0,求a的取值范围;
(3)求证:
12+1+1
12+1
22+2+1
22+2
32+3+1
32+3
•…•
n2+n+1
n2+n
<e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(1+x)-
14
x2 是定义在[0,2]上的函数
(1)求函数f(x)的单调区间
(2)若f(x)≥c对定义域内的x恒成立,求c的取值范围..

查看答案和解析>>

同步练习册答案