精英家教网 > 高中数学 > 题目详情
设集合A={x|-4<x<2},B={x|-m-1<x<m-1,m>0}.求分别满足下列条件的m的取值集合.
(1)A⊆B;
(2)A∩B=∅.
分析:(1)要使A⊆B,必须满足
-m-1≤-4
2≤m-1
,由此能求出m的取值集合.
(2)由m>0,知-m-1<m-1,B≠∅.要使A∩B=∅,必须满足-m-1≥2,或m-1≤-4,由此能求出m的取值集合.
解答:解:(1)要使A⊆B,必须满足
-m-1≤-4
2≤m-1

m≥3
m≥3
,即m≥3.
∴m的取值集合为{m|m≥3}.
(2)∵m>0,∴-m-1<m-1,B≠∅.
要使A∩B=∅,必须满足-m-1≥2,或m-1≤-4,
即m≤-3,或m≤-3,即m≤-3,而m>0,故不存在m使得A∩B=∅.
∴m的取值集合∅.
点评:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|-4<x<3},B={x|x≤2},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-4≤x≤3},B={x|x<-1或x>4},求A∪B,?RA∪?RB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设集合A={x|-4<x<2},B={x|-m-1<x<m-1,m>0}.求分别满足下列条件的m的取值集合.
(1)A⊆B;
(2)A∩B=∅.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设集合A={x|-4<x<3},B={x|x≤2},则A∩B=(  )
A.(-4,3)B.(-4,2]C.(-∞,2]D.(-∞,3)

查看答案和解析>>

同步练习册答案