精英家教网 > 高中数学 > 题目详情
17.已知定义在R上的奇函数f(x),当x>0时,f(x)=-x2-2ax-4.若函数f(x)有5个零点,则实数a的取值范围是(  )
A.(-∞,-2)B.(2,+∞)C.(-∞,0)D.(-2,2)

分析 由题意可化为f(x)=-x2-2ax-4在(0,+∞)上有两个零点,从而解得.

解答 解:∵f(x)是定义在R上的奇函数,
∴f(0)=0,
∵函数f(x)有5个零点,
∴f(x)在(-∞,0)上有两个零点,
在f(x)=-x2-2ax-4在(0,+∞)上有两个零点,
∴$\left\{\begin{array}{l}{-a>0}\\{f(0)=-4<0}\\{f(-a)=-{a}^{2}+2{a}^{2}-4>0}\end{array}\right.$,
解得,a<-2,
故选:A.

点评 本题考查了函数的性质的应用及函数的零点的应用,同时考查了二次函数的性质应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.实数x,y满足条件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{-2x+y+5≥0}\end{array}\right.$,目标函数z=3x+y的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是(  )
A.f(x)=x3B.f(x)=lgxC.$f(x)={({\frac{1}{2}})^x}$D.f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆的两个焦点坐标分别为F1(-1,0),F2(1,0),并且经过点M(1,$\frac{\sqrt{2}}{2}$).
(1)求椭圆的标准方程;
(2)如果直线y=x+m与这个椭圆交于两个不同的点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某人开车以40km/h的速度从A地到100km远处的B地,在B地停留1h后,再以50km/h的速度返回A地.
(1)把汽车行驶的路程s表示为时间t(从A地出发时开始计时)的函数;
(2)该汽车在匀速行驶中每小时的耗油量y(升)与速度x(km/h)的关系可以表示为y=$\frac{1}{128000}$x3-$\frac{3}{80}$x+8(0<x≤120),从A地到B地,该汽车要耗油多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.找规律填数:$\frac{1}{2}$,$\frac{3}{5}$,$\frac{1}{2}$,$\frac{7}{17}$,$\frac{2n-1}{{n}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数a>0,b>0,函数f(x)=ax2+b满足:对任意实数x,y,有f(xy)+f(x+y)≥f(x)f(y),则实数a的取值范围是(  )
A.(0,1]B.(0,1)C.(0,2)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知F1,F2是椭圆$Γ:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点,椭圆Γ的离心率$e=\frac{{\sqrt{2}}}{2}$,P(x0,y0)是Γ上异于左右顶点的任意一点,且△PF1F2的面积的最大值为1.
(Ⅰ)求椭圆Γ的方程;
(Ⅱ)直线l是椭圆在点P处的切线,过F2作PF2的垂线,交直线l相交于Q,求证:点Q落在一条定直线m上,并求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数x,y满足$\left\{\begin{array}{l}{2x+y≤8}\\{x+y≥a}\\{x≥0}\end{array}\right.$,且z=60x+20y的最大值为200,则a等于(  )
A.4B.6C.3D.9

查看答案和解析>>

同步练习册答案