分析 根据方程的根与对应函数的零点的关系,我们可用图象法解答本题,即关于x的方程$\sqrt{4-{x^2}}-kx+2k-3=0$有且只有一个实数根,则函数y=$\sqrt{4-{x}^{2}}$的图象与y=kx+3-2k的图象有且只有1个交点,在同一坐标系中画出函数y=$\sqrt{4-{x}^{2}}$的图象与y=kx+3-2k的图象,分析图象即可得到答案.
解答 解:若关于x的方程$\sqrt{4-{x^2}}-kx+2k-3=0$有且只有一个实数根,
则函数y=$\sqrt{4-{x}^{2}}$的图象与y=kx+3-2k的图象有且只有1个交点
∵函数y=kx+3-2k的图象恒过(2,3)点
故在同一坐标系中画出函数y=$\sqrt{4-{x}^{2}}$的图象与y=kx+3-2k的图象如下图所示:
由图可知
当k=$\frac{5}{12}$时,直线与圆相切,
当k=$\frac{3}{4}$时,直线过半圆的左端点(-2,0)
若函数y=$\sqrt{4-{x}^{2}}$的图象与y=kx+3-2k的图象有且只有1个交点,则0<k<$\frac{3}{4}$或k=$\frac{5}{12}$
故答案为:0<k<$\frac{3}{4}$或k=$\frac{5}{12}$.
点评 本题考查的知识点是根的存在性及根的个数判断,方程的根与函数零点的关系,函数的图象,其中在确定无法解答的方程问题时,将其转化为确定对应函数的零点,利用图象法解答是最常用的方法.
科目:高中数学 来源: 题型:选择题
A. | (e,+∞) | B. | $(\frac{1}{e},1)$ | C. | (2,3) | D. | (e,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
x | 0 | 1 | 2 |
y | a | $\frac{20}{3}$ | $\frac{40}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 5 | B. | 8 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{O{G_1}}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$ | B. | $\overrightarrow{O{G_1}}=\frac{1}{9}\overrightarrow{OA}+\frac{1}{9}\overrightarrow{OB}+\frac{1}{9}\overrightarrow{OC}$ | ||
C. | $\overrightarrow{O{G_1}}=\frac{1}{3}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$ | D. | $\overrightarrow{O{G_1}}=\frac{3}{4}\overrightarrow{OA}+\frac{3}{4}\overrightarrow{OB}+\frac{3}{4}\overrightarrow{OC}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $2\sqrt{2}$ | B. | $4\sqrt{2}$ | C. | 6 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{5}$ | D. | $\frac{\sqrt{5}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com