科目:高中数学 来源:2013-2014学年上海市杨浦区高三上学期学业质量调研理科数学试卷(解析版) 题型:解答题
设是数列的前项和,对任意都有成立, (其中、、是常数).
(1)当,,时,求;
(2)当,,时,
①若,,求数列的通项公式;
②设数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“数列”.
如果,试问:是否存在数列为“数列”,使得对任意,都有
,且.若存在,求数列的首项的所
有取值构成的集合;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2014届江西省红色六校高三第一次联考理科数学试卷(解析版) 题型:解答题
对于任意的(不超过数列的项数),若数列的前项和等于该数列的前项之积,则称该数列为型数列。
(1)若数列是首项的型数列,求的值;
(2)证明:任何项数不小于3的递增的正整数列都不是型数列;
(3)若数列是型数列,且试求与的递推关系,并证明对恒成立。
查看答案和解析>>
科目:高中数学 来源:2014届河北省高一下学期期末数学试卷(解析版) 题型:填空题
若一个数列的第项等于这个数列的前项和,则称该数列为“和数列”,若等差数列是一个“2012和数列”,且,则其前项和最大时 。
查看答案和解析>>
科目:高中数学 来源:2007年普通高等学校招生全国统一考试理科数学卷(上海) 题型:解答题
若有穷数列(是正整数),满足即
(是正整数,且),就称该数列为“对称数列”。
(1)已知数列是项数为7的对称数列,且成等差数列,,试写出的每一项
(2)已知是项数为的对称数列,且构成首项为50,公差为的等差数列,数列的前项和为,则当为何值时,取到最大值?最大值为多少?
(3)对于给定的正整数,试写出所有项数不超过的对称数列,使得成为数列中的连续项;当时,试求其中一个数列的前2008项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com