【题目】在平面直角坐标系xOy中,椭圆C:(a>b>0)的离心率为,右焦点到右准线的距离为3.
(1)求椭圆C的标准方程;
(2)过点P(0,1)的直线l与椭圆C交于两点A,B.己知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.
【答案】(1)(2)Q(1,)或(﹣1,)
【解析】
(1)结合椭圆离心率以及右焦点到右准线的距离,以及,求得,进而求得椭圆的标准方程.
(2)首先判断直线斜率不存在时,四边形不可能是平行四边形,不符合题意.然后设出直线的方程,联立直线的方程和椭圆方程,写出根与系数关系,求得点坐标并代入椭圆方程,由此求得的值,进而求得点坐标.
(1)设焦距为2c,
∵椭圆C的离心率为,∴①,
∵右焦点到右准线的距离为3,∴②,
由①,②解得a=2,c=1,故b2=a2﹣c2=3,
∴椭圆C的标准方程为,
(2)当直线l斜率不存在时,四边形OAQB不可能平行四边形,故直线l斜率存在
∵直线l过点P(0,1),设直线l为:,
设A(,),B(,),
由四边形OAQB是平行四边形,得Q(,)
,化简得:,
,
,
∴Q(,),∵点Q在椭圆C上,
∴,解得,代入Q的坐标,得
Q(1,)或(﹣1,).
科目:高中数学 来源: 题型:
【题目】某果园今年的脐橙丰收了,果园准备利用互联网销售.为了更好的销售,现随机摘下了个脐橙进行测重,其质量分布在区间内(单位:克),统计质量的数据作出频率分布直方图如下图所示:
(1)按分层抽样的方法从质量落在,的脐橙中随机抽取个,再从这个脐橙中随机抽个,求这个脐橙质量都不小于克的概率;
(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该果园的脐橙树上大约还有个脐橙待出售,某电商提出两种收购方案:甲:所有脐橙均以元/千克收购;乙:低于克的脐橙以元/个收购,高于或等于克的以元/个收购.请通过计算为该果园选择收益最好的方案.
(参考数据:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,,,,若.
⑴ 求函数的最小正周期和单调递增区间;
⑵ 将函数的图象上各点的横坐标伸长为原来的倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求函数在上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,AD=AP=3,点M是棱PD的中点.
(1)求二面角M—AC—D的余弦值;
(2)点N是棱PC上的点,已知直线MN与平面ABCD所成角的正弦值为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)已知过原点的动直线与圆 相交于不同的两点,.
(1)求圆的圆心坐标;
(2)求线段的中点的轨迹的方程;
(3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:(),圆:(),抛物线上的点到其准线的距离的最小值为.
(1)求抛物线的方程及其准线方程;
(2)如图,点是抛物线在第一象限内一点,过点P作圆的两条切线分别交抛物线于点A,B(A,B异于点P),问是否存在圆使AB恰为其切线?若存在,求出r的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com