精英家教网 > 高中数学 > 题目详情
sin1490°(1-cot640°)化简的结果为   
【答案】分析:先利用诱导公式化简得sin50°×(1+tan60°tan10°),再切化弦,利用差角的余弦公式可得答案.
解答:解:原式=sin50°×(1+tan60°tan10°)=
故答案为1.
点评:本题主要考查诱导公式的运用,考查差角的余弦公式的运用,解题的关键是切化弦,应注意细细体会.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB∥平面DEG;
(2)求证:BD⊥EG;
(3)求二面角C-DF-E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BBl∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值;
(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.
①当t>
35
时,连接C′C,设四边形ACC′A′的面积为S,求S关于t的函数关系式;
②当线段A′C′与射线BB,有公共点时,求t的取值范围(写出答案即可).

查看答案和解析>>

科目:高中数学 来源: 题型:

sin1490°(1-
3
cot640°)化简的结果为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)如图,在正三棱柱ABC-A1B1C1中,D、E、G分别是AB、BB1、AC1的中点,AB=BB1=2.
(Ⅰ)在棱B1C1上是否存在点F使GF∥DE?如果存在,试确定它的位置;如果不存在,请说明理由;
(Ⅱ)求截面DEG与底面ABC所成锐二面角的正切值.

查看答案和解析>>

同步练习册答案