精英家教网 > 高中数学 > 题目详情
如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为     

试题分析:由图可得:,这是一道求异面直线所成角的题目,角的落实是关键。结合三角形进行求解是本题的重点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆锥母线长为6,底面圆半径长为4,点是母线的中点,是底面圆的直径,底面半径与母线所成的角的大小等于

(1)当时,求异面直线所成的角;
(2)当三棱锥的体积最大时,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在空间直角坐标系O-xyz中,正四棱锥P-ABCD的侧棱长与底边长都为,点M,N分别在PA,BD上,且

(1)求证:MN⊥AD;
(2)求MN与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三角形所在平面互相垂直,且,点,分别在线段上,沿直线向上翻折,使重合.

(Ⅰ)求证:
(Ⅱ)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱锥中,是边长为2的正三角形,平面平面,,分别为的中点.

(1)证明:;
(2)求锐二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直棱柱ABC-中,D,E分别是AB,BB1的中点,=AC=CB=AB.

(Ⅰ)证明: //平面
(Ⅱ)求二面角D--E的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱柱中,所成角均为,且,则所成角的余弦值为(   )
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体ABCD­A1B1C1D1中,AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,已知三棱锥的侧棱两两垂直,且的中点.

(Ⅰ)求异面直线所成角的余弦值;
(Ⅱ)BE和平面所成角的正弦值.

查看答案和解析>>

同步练习册答案