精英家教网 > 高中数学 > 题目详情
某食品企业一个月内被消费者投诉的次数用表示,椐统计,随机变量的概率分布如下:

0
1
2
3
p
0.1
0.3
2a
a
(1)求a的值和的数学期望;
(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.
(1);(2).

试题分析:(1)由概率分布的性质可求得a,再由求期望的公式即可求得数学期望.
(2) “两个月内共被投诉2次”这个事件包含以下两个事件: “两个月内有一个月被投诉2次,另外一个月被投诉0次”; “两个月内每月均被投诉1次”,这两个事件显然互斥,那么求出这两个事件的概率相加即得.
试题解析:(1)由概率分布的性质有0.1+0.3+2a+a=1,解答a=0.2         2分
的概率分布为

0
1
2
3
P
0.1
0.3
0.4
0.2
            4分
                6分
(2)设事件A表示“两个月内共被投诉2次”,事件表示“两个月内有一个月被投诉2次,另外一个月被投诉0次”;事件表示“两个月内每月均被投诉1次”,这两个事件互斥.
由题设,一月份与二月份被消费者投诉的次数互不影响,即相互独立,所以
                      8分
                       10分

故该企业在这两个月内共被消费者投诉2次的概率为0.17          12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某选修课的考试按A级、B级依次进行,只有当A级成绩合格时,才可继续参加B级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A级考试成绩合格的概率为,B级考试合格的概率为.假设各级考试成绩合格与否均互不影响.
(1)求他不需要补考就可获得该选修课的合格证书的概率;
(2)在这个考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的数学期望E

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

湖南省在学业水平考查中设计了物理学科的实验考查方案:考生从道备选试验考查题中一次随机抽取题,并按照题目要求独立完成全部实验操作.规定:至少正确完成其中题便通过考查.已知道备选题中文科考生甲有题能正确完成,题不能完成;文科考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(Ⅰ)分别写出文科考生甲正确完成题数和文科考生乙正确完成题数的概率分布列,并计算各自的数学期望;
(Ⅱ)试从两位文科考生正确完成题数的数学期望及通过考查的概率分析比较这两位考生的实验操作能力.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个袋子中装有6个红球和4个白球,假设每一个球被摸到的可能性是相等的.
(Ⅰ)从袋子中摸出3个球,求摸出的球为2个红球和1个白球的概率;
(Ⅱ)从袋子中摸出两个球,其中白球的个数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某舞蹈小组有2名男生和3名女生.现从中任选2人参加表演,记为选取女生的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某项游戏活动的奖励分成一、二、三等奖且相应获奖概率是以a1为首项,公比为2的等比数列,相应资金是以700元为首项,公差为-140元的等差数列,则参与该游戏获得资金的期望为________元.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

多选题是标准化考试的一种题型,一般是从A、B、C、D四个选项中选出所有正确的答案.在一次考试中有5道多选题,某同学一道都不会,他随机的猜测,则他答对题数的期望值为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛. 该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为分)进行统计,制成如下频率分布表.
分数(分数段)
频数(人数)
频率
[60,70)


[70,80)


[80,90)


 [90,100)


合  计


(Ⅰ)求出上表中的的值;
(Ⅱ)按规定,预赛成绩不低于分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一·二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一·二班在决赛中进入前三名的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某射手射击所得环数的分布列如下:

7
8
9
10
P
x
0.1
0.3
y
已知的期望,则y的值为        

查看答案和解析>>

同步练习册答案