精英家教网 > 高中数学 > 题目详情
关于直线与平面,有下列四个命题: 
,则;   ②,则
,则;  ④,则.
其中正确命题的个数是(  )
A.1B.2C.3D.4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图所示,在四棱台中, 底面ABCD是正方形,且底面 , .
(1)求异面直线所成角的余弦值;
(2)试在平面中确定一个点,使得平面
(3)在(2)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求证:平面A B1D1∥平面EFG;
(2)求证:平面AA1C⊥面EFG .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分6分)
(如图)在底面半径为2母线长为4的圆锥中内接一个高为的圆柱,求圆柱的表面积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
已知四棱锥P—ABCD的底面为直角梯形,AB//DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点。
(I)求AC与PB所成角的余弦值;
(II)求面AMC与面BMC所成二面角的余弦值的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
直三棱柱ABO-A1B1O1中,∠AOB=90°,D为AB的中点,AO=BO=BB1=2.
①求证:BO1⊥AB1
②求证:BO1∥平面OA1D;
③求三棱锥B—A1OD的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方体的棱长为,点在线段上,点在线段上,点在线段上,且的中点,则四面体的体积(   )
A.与有关,与无关B.与无关,与无关
C.与无关,与有关D.与有关,与有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图(1)在正方形中,E、F分别是边的中点,沿SE、SF及EF把这个正方形折成一个几何体如图(2),使三点重合于G, 下面结论成立的是(    )
A.B.
C.D.
     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱锥A-BCD中,BAAD,BCCD,且AB=1,AD=,则此三棱锥外接球的体积为         

查看答案和解析>>

同步练习册答案