精英家教网 > 高中数学 > 题目详情

【题目】为了了解初三女生身高情况,某中学对初三女生身高情况进行了一次测量,所得数据整理后列出了频率分布表如下:

组 别

频数

频率

145.5~149.5

1

0.02

149.5~153.5

4

0.08

153.5~157.5

20

0.40

157.5~161.5

15

0.30

161.5~165.5

8

0.16

165.5~169.5

m

n

合 计

M

N


(1)求出表中m,n,M,N所表示的数分别是多少?
(2)画出频率分布直方图;
(3)全体女生中身高在哪组范围内的人数最多?

【答案】
(1)解:由频率的意义知,N=1,

n=1﹣(0.02+0.08+0.40+0.30+0.16)=0.04,

由第一组的频率和频数,可求得m=2,M=1+4+20+15+8+2=50.

∴m=2,n=0.04,M=50,N=1


(2)解:频率分布直方图如图.


(3)解:由频率分步表可得全体女生中身高在153.5~157.5这一组范围内的人数最多,为20人
【解析】(1)由频率的意义知,N=1,n=1﹣(0.02+0.08+0.40+0.30+0.16),由第一组的频率和频数,可求得m=2,M=1+4+20+15+8+2,从而得到结论.(2)频率分布直方图如图.(3)由频率分步表可得全体女生中身高在153.5~157.5这一组范围内的人数最多.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象过原点,且在处取得极值,直线与曲线在原点处的切线互相垂直.

求函数的解析式;

若对任意实数的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(l)求的单调区间;

(2)若函数在区间内存在唯一的极值点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P是平行四边形ABCD所在平面外一点,E是PD的中点.
(1)求证:PB∥平面EAC;
(2)若M是CD上异于C、D的点.连结PM交CE于G,连结BM交AC于H,求证:GH∥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(3,6)且与x,y轴的正半轴分别交于A、B两点,O是坐标原点,则当|OA|+|OB|取得最小值时的直线方程是(用一般式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin(2x﹣ )的图象,可以将函数y=sin2x的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 是边长为4的正方形.平面⊥平面 .

(1)求证: ⊥平面ABC;

(2)求二面角的余弦值;

(3)证明:在线段存在点,使得,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:

喜欢《最强大脑》

不喜欢《最强大脑》

合计

男生

15

女生

15

合计

已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4

( I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;

( II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.

下面的临界值表仅参考:

P(K2≥k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2=,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2x2+bx+c.
(1)对任意x∈[﹣1,1],f(x)的最大值与最小值之差不大于6,求b的取值范围;
(2)若f(x)=0有两个不同实根,f(f(x))无零点,求证: >1.

查看答案和解析>>

同步练习册答案