精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱中,已知

(1)求异面直线夹角的余弦值;
(2)求二面角平面角的余弦值.

(1),(2)

解析试题分析:(1)利用空间向量求线线角,关键在于正确表示各点的坐标. 以为正交基底,建立空间直角坐标系.则,所以,因此,所以异面直线夹角的余弦值为.(2)利用空间向量求二面角,关键在于求出一个法向量. 设平面的法向量为,则 即取平面的一个法向量为;同理可得平面的一个法向量为;由两向量数量积可得二面角平面角的余弦值为
试题解析:

如图,以为正交基底,建立空间直角坐标系
,所以

(1)因为
所以异面直线夹角的余弦值为.                    4分
(2)设平面的法向量为
 即
取平面的一个法向量为
 
所以二面角平面角的余弦值为.                       10分
考点:利用空间向量求线线角及二面角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,直三棱柱的底面是等腰直角三角形,,侧棱底面,且的中点,上的点.
(1)求异面直线所成角的大小(结果用反三角函数表示);
(2)若,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形与梯形所在的平面互相垂直,的中点.
(1)求证:∥平面
(2)求证:平面平面
(3)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△ABC中,∠ABC=,∠BAC,AD是BC上的高,沿AD把△ABD折起,使∠BDC

(1)证明:平面ADB⊥平面BDC;
(2)设E为BC的中点,求夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方体的棱长为2,E、F分别是的中点,过、E、F作平面于G.
(l)求证:EG∥
(2)求二面角的余弦值;
(3)求正方体被平面所截得的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点.

(1)求证:平面平面EBD;
(2)若PA=AB=2,直线PB与平面EBD所成角的正弦值为,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形为平行四边形,平面.

(1)若是线段的中点,求证:平面
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,分别为的中点,.

(1)证明:∥面
(2)求面与面所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知,(两两互相垂直的单位向量),那么=        .

查看答案和解析>>

同步练习册答案